卷积神经网络

卷积神经网络的层级结构

      • 数据输入层/ Input layer

    • 卷积计算层/ CONV layer

  • ReLU激励层 / ReLU layer

  • 池化层 / Pooling layer

  • 全连接层 / FC layer

Pytorch中的卷积模块为nn.Conv2d,里面常用的参数有5个,分别是in_channels,out_channels,kernel_size,stride,padding,除此之外还有参数dilation,groups,bias.

        in_channels对应的是输入数据体的深度;out_channels表示输出数据体的深度;kernel_size表示滤波器(卷积核)的大小,可以使用一个数字来表示高和宽度相同的卷积核,例如kernel_size=3,也可以用不同的数字来表示高和宽不同的卷积核,例如kernel_size=(3,2);stride表示滑动的步长;padding=0表示四周不进行零填充,padding=1表示四周进行一个像素点的零填充;bias是一个布尔值,默认为True,表示使用偏置(y=wx+b中的b)groups表示输出数据体深度上和输入数据体深度上的联系,默认groups=1,也就是所有的输出和输入都是有关联的,如果groups=2,这表示输入的深度被分割成两部分,他们之间分别对应起来,所以要求输出和输入都必须要能被groups整除;dilation表示卷积对于输入数据体的空间间隔,默认为1 。

nn.Conv2d(in_channelsout_channelskernel_sizestride=1padding=0dilation=1groups=1bias=Truepadding_mode='zeros')

池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。

这里再展开叙述池化层的具体作用。

1. 特征不变性,也就是我们在图像处理中经常提到的特征的尺度不变性,池化操作就是图像的resize,平时一张狗的图像被缩小了一倍我们还能认出这是一张狗的照片,这说明这张图像中仍保留着狗最重要的特征,我们一看就能判断图像中画的是一只狗,图像压缩时去掉的信息只是一些无关紧要的信息,而留下的信息则是具有尺度不变性的特征,是最能表达图像的特征。

2. 特征降维,我们知道一幅图像含有的信息是很大的,特征也很多,但是有些信息对于我们做图像任务时没有太多用途或者有重复,我们可以把这类冗余信息去除,把最重要的特征抽取出来,这也是池化操作的一大作用。

3. 在一定程度上防止过拟合,更方便优化。


images

   nn.MaxPool2d()表示网络中的最大值池化,其中的参数有kernel_size,stride,padding,dilation,return_indices,ceil_mode。其中的kernel_size,stride,padding,dilation之前的卷积层已经介绍过。return_indices表示是否返回最大值所处的下标,默认为False;ceil_mode表示使用一些方格代替层结构,默认为False,一般不会设置这类参数;nn.AvgPool2d()表示均值池化,里面的参数跟nn.MaxPool2d()类似,但是多一个参数count_include_pad,表示计算均值的时候是否包含零填充,默认为True.池化层用的方法有Max pooling 和 average pooling,而实际用的较多的是Max pooling。

nn.MaxPool2d(kernel_size, stride, padding,dilation,return_indices=False,ceil_mode=False)


        全连接层:两层之间所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。也就是跟传统的神经网络神经元的连接方式是一样的:

images

一般CNN结构依次为

1.INPUT

2.[[CONV -> RELU]*N -> POOL?]*M 

3.[FC -> RELU]*K

4.FC

by PengSW_10 on 2019/4/5

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容