笔记|数据分析之pandas基础----重塑

数据重塑

重塑层次化索引

层次化索引为DataFrame数据的重排任务提供了一种良好一致性的方式。主要功能:

  • stack: 将数据的列”旋转“为行
  • unstack:将数据的行“旋转”为列

接下来看一个行列索引均为字符串的例子:

In [169]: data = DataFrame(np.arange(6).reshape((2,3)),index=pd.Index(['Ohio','Colorado'],name='sta
     ...: te'),columns=pd.Index(['one','two','three'],name='number'))

In [170]: data
Out[170]:
number    one  two  three
state
Ohio        0    1      2
Colorado    3    4      5

将数据转换为行,得到一个Series:

In [171]: result = data.stack()

In [172]: result
Out[172]:
state     number
Ohio      one       0
          two       1
          three     2
Colorado  one       3
          two       4
          three     5
dtype: int64

对于一个层次化索引的Series,可以使用unstack函数将其转换为DataFrame:

In [173]: result.unstack()
Out[173]:
number    one  two  three
state
Ohio        0    1      2
Colorado    3    4      5

默认情况下,unstackstack操作的是最内层。传入分层级别的编号或者名称即可对其他级别进行操作。

In [174]: result.unstack(0)
Out[174]:
state   Ohio  Colorado
number
one        0         3
two        1         4
three      2         5

In [175]: result.unstack('state')
Out[175]:
state   Ohio  Colorado
number
one        0         3
two        1         4
three      2         5

**如果不是所有的级别值都能在各分组中找到的话,则unstack操作可能会引入缺失数据:

In [180]: s1 = Series([0,1,2,3], index=['a','b','c','d'])

In [182]: s2 = Series([4,5,6], index=['c','d','e'])

In [183]: data2 = pd.concat([s1,s2], keys=['one','two'])

In [184]: data2
Out[184]:
one  a    0
     b    1
     c    2
     d    3
two  c    4
     d    5
     e    6
dtype: int64

In [185]: data2.unstack()
Out[185]:
       a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0

而stack则相反,会默认滤除缺失数据

In [186]: data2.unstack().stack()
Out[186]:
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
two  c    4.0
     d    5.0
     e    6.0
dtype: float64

In [187]: data2.unstack().stack(dropna=False)
Out[187]:
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    NaN
two  a    NaN
     b    NaN
     c    4.0
     d    5.0
     e    6.0
dtype: float64

在对DataFrame进行unstack操作时,作为旋转轴的级别将会成为结果中最低级别:

In [198]: df.unstack()
Out[198]:
side     left           right
number    one two three   one two three
state
Ohio        0   1     2     5   6     7
Colorado    3   4     5     8   9    10

In [192]: df.unstack('state')
Out[192]:
side   left          right
state  Ohio Colorado  Ohio Colorado
number
one       0        3     5        8
two       1        4     6        9
three     2        5     7       10

对于这种特性,我是这么理解的。由于数据的特殊性存在着行索引名和列索引名,在unstack操作时将行“旋转”为列,在经过旋转后number变成了内层的列索引名。

相反如果将该数据通过stack方法将列转为行:

In [272]: df.unstack().stack()
Out[272]:
side             left  right
state    number
Ohio     one        0      5
         two        1      6
         three      2      7
Colorado one        3      8
         two        4      9
         three      5     10

将“长格式”旋转为“宽格式”

多个时间序列数据通常是以“长格式(long)”或'堆叠格式(stacked)"存储在数据库和CSV中。

In [274]: data = pd.read_csv('examples/macrodata.csv')

In [275]: data.head
Out[275]:
<bound method NDFrame.head of        year  quarter    realgdp  realcons   realinv  ...  tbilrate  unemp      pop  infl  realint
0    1959.0      1.0   2710.349    1707.4   286.898  ...      2.82    5.8  177.146  0.00     0.00
1    1959.0      2.0   2778.801    1733.7   310.859  ...      3.08    5.1  177.830  2.34     0.74
2    1959.0      3.0   2775.488    1751.8   289.226  ...      3.82    5.3  178.657  2.74     1.09
3    1959.0      4.0   2785.204    1753.7   299.356  ...      4.33    5.6  179.386  0.27     4.06
4    1960.0      1.0   2847.699    1770.5   331.722  ...      3.50    5.2  180.007  2.31     1.19
5    1960.0      2.0   2834.390    1792.9   298.152  ...      2.68    5.2  180.671  0.14     2.55
6    1960.0      3.0   2839.022    1785.8   296.375  ...      2.36    5.6  181.528  2.70    -0.34
7    1960.0      4.0   2802.616    1788.2   259.764  ...      2.29    6.3  182.287  1.21     1.08
8    1961.0      1.0   2819.264    1787.7   266.405  ...      2.37    6.8  182.992 -0.40     2.77
9    1961.0      2.0   2872.005    1814.3   286.246  ...      2.29    7.0  183.691  1.47     0.81
10   1961.0      3.0   2918.419    1823.1   310.227  ...      2.32    6.8  184.524  0.80     1.52
11   1961.0      4.0   2977.830    1859.6   315.463  ...      2.60    6.2  185.242  0.80     1.80
12   1962.0      1.0   3031.241    1879.4   334.271  ...      2.73    5.6  185.874  2.26     0.47
13   1962.0      2.0   3064.709    1902.5   331.039  ...      2.78    5.5  186.538  0.13     2.65
14   1962.0      3.0   3093.047    1917.9   336.962  ...      2.78    5.6  187.323  2.11     0.67
15   1962.0      4.0   3100.563    1945.1   325.650  ...      2.87    5.5  188.013  0.79     2.08
16   1963.0      1.0   3141.087    1958.2   343.721  ...      2.90    5.8  188.580  0.53     2.38
17   1963.0      2.0   3180.447    1976.9   348.730  ...      3.03    5.7  189.242  2.75     0.29
18   1963.0      3.0   3240.332    2003.8   360.102  ...      3.38    5.5  190.028  0.78     2.60
19   1963.0      4.0   3264.967    2020.6   364.534  ...      3.52    5.6  190.668  2.46     1.06
20   1964.0      1.0   3338.246    2060.5   379.523  ...      3.51    5.5  191.245  0.13     3.38
21   1964.0      2.0   3376.587    2096.7   377.778  ...      3.47    5.2  191.889  0.90     2.57
22   1964.0      3.0   3422.469    2135.2   386.754  ...      3.53    5.0  192.631  1.29     2.25
23   1964.0      4.0   3431.957    2141.2   389.910  ...      3.76    5.0  193.223  2.05     1.71
24   1965.0      1.0   3516.251    2188.8   429.145  ...      3.93    4.9  193.709  1.28     2.65
25   1965.0      2.0   3563.960    2213.0   429.119  ...      3.84    4.7  194.303  2.54     1.30
26   1965.0      3.0   3636.285    2251.0   444.444  ...      3.93    4.4  194.997  0.89     3.04
27   1965.0      4.0   3724.014    2314.3   446.493  ...      4.35    4.1  195.539  2.90     1.46
28   1966.0      1.0   3815.423    2348.5   484.244  ...      4.62    3.9  195.999  4.99    -0.37
29   1966.0      2.0   3828.124    2354.5   475.408  ...      4.65    3.8  196.560  2.10     2.55
..      ...      ...        ...       ...       ...  ...       ...    ...      ...   ...      ...
173  2002.0      2.0  11538.770    7997.8  1810.779  ...      1.70    5.8  288.028  1.56     0.14
174  2002.0      3.0  11596.430    8052.0  1814.531  ...      1.61    5.7  288.783  2.66    -1.05
175  2002.0      4.0  11598.824    8080.6  1813.219  ...      1.20    5.8  289.421  3.08    -1.88
176  2003.0      1.0  11645.819    8122.3  1813.141  ...      1.14    5.9  290.019  1.31    -0.17
177  2003.0      2.0  11738.706    8197.8  1823.698  ...      0.96    6.2  290.704  1.09    -0.13
178  2003.0      3.0  11935.461    8312.1  1889.883  ...      0.94    6.1  291.449  2.60    -1.67
179  2003.0      4.0  12042.817    8358.0  1959.783  ...      0.90    5.8  292.057  3.02    -2.11
180  2004.0      1.0  12127.623    8437.6  1970.015  ...      0.94    5.7  292.635  2.35    -1.42
181  2004.0      2.0  12213.818    8483.2  2055.580  ...      1.21    5.6  293.310  3.61    -2.41
182  2004.0      3.0  12303.533    8555.8  2082.231  ...      1.63    5.4  294.066  3.58    -1.95
183  2004.0      4.0  12410.282    8654.2  2125.152  ...      2.20    5.4  294.741  2.09     0.11
184  2005.0      1.0  12534.113    8719.0  2170.299  ...      2.69    5.3  295.308  4.15    -1.46
185  2005.0      2.0  12587.535    8802.9  2131.468  ...      3.01    5.1  295.994  1.85     1.16
186  2005.0      3.0  12683.153    8865.6  2154.949  ...      3.52    5.0  296.770  9.14    -5.62
187  2005.0      4.0  12748.699    8888.5  2232.193  ...      4.00    4.9  297.435  0.40     3.60
188  2006.0      1.0  12915.938    8986.6  2264.721  ...      4.51    4.7  298.061  2.60     1.91
189  2006.0      2.0  12962.462    9035.0  2261.247  ...      4.82    4.7  298.766  3.97     0.85
190  2006.0      3.0  12965.916    9090.7  2229.636  ...      4.90    4.7  299.593 -1.58     6.48
191  2006.0      4.0  13060.679    9181.6  2165.966  ...      4.92    4.4  300.320  3.30     1.62
192  2007.0      1.0  13099.901    9265.1  2132.609  ...      4.95    4.5  300.977  4.58     0.36
193  2007.0      2.0  13203.977    9291.5  2162.214  ...      4.72    4.5  301.714  2.75     1.97
194  2007.0      3.0  13321.109    9335.6  2166.491  ...      4.00    4.7  302.509  3.45     0.55
195  2007.0      4.0  13391.249    9363.6  2123.426  ...      3.01    4.8  303.204  6.38    -3.37
196  2008.0      1.0  13366.865    9349.6  2082.886  ...      1.56    4.9  303.803  2.82    -1.26
197  2008.0      2.0  13415.266    9351.0  2026.518  ...      1.74    5.4  304.483  8.53    -6.79
198  2008.0      3.0  13324.600    9267.7  1990.693  ...      1.17    6.0  305.270 -3.16     4.33
199  2008.0      4.0  13141.920    9195.3  1857.661  ...      0.12    6.9  305.952 -8.79     8.91
200  2009.0      1.0  12925.410    9209.2  1558.494  ...      0.22    8.1  306.547  0.94    -0.71
201  2009.0      2.0  12901.504    9189.0  1456.678  ...      0.18    9.2  307.226  3.37    -3.19
202  2009.0      3.0  12990.341    9256.0  1486.398  ...      0.12    9.6  308.013  3.56    -3.44

[203 rows x 14 columns]>

这种类型的数据就是多个时间序列的长格式。接下来要对它进行时间序列规整和数据清洗:
在清洗之前需要把这种数据库格式转换为DataFrame格式以方便处理
我们通过DataFrame的pivot函数来实现转换

In [282]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,name='date')

In [283]: columns = pd.Index(['realgdp','infl','unemp'], name='item')

In [284]: data = data.reindex(columns=columns)

In [285]: data.index = periods.to_timestamp('D','end')

In [286]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [288]: pivoted = ldata.pivot('date', 'item', 'value')

In [289]: pivoted.head
Out[289]:
<bound method NDFrame.head of item                           infl    realgdp  unemp
date
1959-03-31 23:59:59.999999999  0.00   2710.349    5.8
1959-06-30 23:59:59.999999999  2.34   2778.801    5.1
1959-09-30 23:59:59.999999999  2.74   2775.488    5.3
1959-12-31 23:59:59.999999999  0.27   2785.204    5.6
1960-03-31 23:59:59.999999999  2.31   2847.699    5.2
1960-06-30 23:59:59.999999999  0.14   2834.390    5.2
1960-09-30 23:59:59.999999999  2.70   2839.022    5.6
1960-12-31 23:59:59.999999999  1.21   2802.616    6.3
1961-03-31 23:59:59.999999999 -0.40   2819.264    6.8
1961-06-30 23:59:59.999999999  1.47   2872.005    7.0
1961-09-30 23:59:59.999999999  0.80   2918.419    6.8
1961-12-31 23:59:59.999999999  0.80   2977.830    6.2
1962-03-31 23:59:59.999999999  2.26   3031.241    5.6
1962-06-30 23:59:59.999999999  0.13   3064.709    5.5
1962-09-30 23:59:59.999999999  2.11   3093.047    5.6
1962-12-31 23:59:59.999999999  0.79   3100.563    5.5
1963-03-31 23:59:59.999999999  0.53   3141.087    5.8
1963-06-30 23:59:59.999999999  2.75   3180.447    5.7
1963-09-30 23:59:59.999999999  0.78   3240.332    5.5
1963-12-31 23:59:59.999999999  2.46   3264.967    5.6
1964-03-31 23:59:59.999999999  0.13   3338.246    5.5
1964-06-30 23:59:59.999999999  0.90   3376.587    5.2
1964-09-30 23:59:59.999999999  1.29   3422.469    5.0
1964-12-31 23:59:59.999999999  2.05   3431.957    5.0
1965-03-31 23:59:59.999999999  1.28   3516.251    4.9
1965-06-30 23:59:59.999999999  2.54   3563.960    4.7
1965-09-30 23:59:59.999999999  0.89   3636.285    4.4
1965-12-31 23:59:59.999999999  2.90   3724.014    4.1
1966-03-31 23:59:59.999999999  4.99   3815.423    3.9
1966-06-30 23:59:59.999999999  2.10   3828.124    3.8
...                             ...        ...    ...
2002-06-30 23:59:59.999999999  1.56  11538.770    5.8
2002-09-30 23:59:59.999999999  2.66  11596.430    5.7
2002-12-31 23:59:59.999999999  3.08  11598.824    5.8
2003-03-31 23:59:59.999999999  1.31  11645.819    5.9
2003-06-30 23:59:59.999999999  1.09  11738.706    6.2
2003-09-30 23:59:59.999999999  2.60  11935.461    6.1
2003-12-31 23:59:59.999999999  3.02  12042.817    5.8
2004-03-31 23:59:59.999999999  2.35  12127.623    5.7
2004-06-30 23:59:59.999999999  3.61  12213.818    5.6
2004-09-30 23:59:59.999999999  3.58  12303.533    5.4
2004-12-31 23:59:59.999999999  2.09  12410.282    5.4
2005-03-31 23:59:59.999999999  4.15  12534.113    5.3
2005-06-30 23:59:59.999999999  1.85  12587.535    5.1
2005-09-30 23:59:59.999999999  9.14  12683.153    5.0
2005-12-31 23:59:59.999999999  0.40  12748.699    4.9
2006-03-31 23:59:59.999999999  2.60  12915.938    4.7
2006-06-30 23:59:59.999999999  3.97  12962.462    4.7
2006-09-30 23:59:59.999999999 -1.58  12965.916    4.7
2006-12-31 23:59:59.999999999  3.30  13060.679    4.4
2007-03-31 23:59:59.999999999  4.58  13099.901    4.5
2007-06-30 23:59:59.999999999  2.75  13203.977    4.5
2007-09-30 23:59:59.999999999  3.45  13321.109    4.7
2007-12-31 23:59:59.999999999  6.38  13391.249    4.8
2008-03-31 23:59:59.999999999  2.82  13366.865    4.9
2008-06-30 23:59:59.999999999  8.53  13415.266    5.4
2008-09-30 23:59:59.999999999 -3.16  13324.600    6.0
2008-12-31 23:59:59.999999999 -8.79  13141.920    6.9
2009-03-31 23:59:59.999999999  0.94  12925.410    8.1
2009-06-30 23:59:59.999999999  3.37  12901.504    9.2
2009-09-30 23:59:59.999999999  3.56  12990.341    9.6

[203 rows x 3 columns]>

前两个参数值分别用作行和列索引的列名,最后一个参数值则是用于填充DataFrame的数据列的列名。

In [290]: ldata['value2'] = np.random.randn(len(ldata))

In [291]: ldata[:10]
Out[291]:
                           date     item     value    value2
0 1959-03-31 23:59:59.999999999  realgdp  2710.349  0.648022
1 1959-03-31 23:59:59.999999999     infl     0.000 -0.748731
2 1959-03-31 23:59:59.999999999    unemp     5.800 -1.365055
3 1959-06-30 23:59:59.999999999  realgdp  2778.801 -0.618768
4 1959-06-30 23:59:59.999999999     infl     2.340 -0.014367
5 1959-06-30 23:59:59.999999999    unemp     5.100 -1.255695
6 1959-09-30 23:59:59.999999999  realgdp  2775.488 -0.943252
7 1959-09-30 23:59:59.999999999     infl     2.740 -0.262365
8 1959-09-30 23:59:59.999999999    unemp     5.300  1.050823
9 1959-12-31 23:59:59.999999999  realgdp  2785.204 -1.224203

如果忽略最后一个参数,得到的DataFrame就会带有层次化的列:

In [292]: pivoted = ldata.pivot('date','item')

In [293]: pivoted[:5]
Out[293]:
                              value                    value2
item                           infl   realgdp unemp      infl   realgdp     unemp
date
1959-03-31 23:59:59.999999999  0.00  2710.349   5.8 -0.748731  0.648022 -1.365055
1959-06-30 23:59:59.999999999  2.34  2778.801   5.1 -0.014367 -0.618768 -1.255695
1959-09-30 23:59:59.999999999  2.74  2775.488   5.3 -0.262365 -0.943252  1.050823
1959-12-31 23:59:59.999999999  0.27  2785.204   5.6  0.773106 -1.224203 -0.302338
1960-03-31 23:59:59.999999999  2.31  2847.699   5.2 -0.403129  0.791051 -0.018440

In [294]: pivoted['value'][:5]
Out[294]:
item                           infl   realgdp  unemp
date
1959-03-31 23:59:59.999999999  0.00  2710.349    5.8
1959-06-30 23:59:59.999999999  2.34  2778.801    5.1
1959-09-30 23:59:59.999999999  2.74  2775.488    5.3
1959-12-31 23:59:59.999999999  0.27  2785.204    5.6
1960-03-31 23:59:59.999999999  2.31  2847.699    5.2
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容