NumPy
NumPy是一个开源的Python科学计算基础库,包含:
- 一个强大的N维数组对象 ndarray
- 广播功能函数
- 整合C/C++/Fortran代码的工具
- 线性代数、傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础
[图片上传中...(image.png-7ce6da-1516518752105-0)]
NumPy的引用
import numpy as np
N维数组对象:ndarray
Python已有列表类型,为什么需要一个数组对象(类型)?
- 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据
- 设置专门的数组对象,经过优化,可以提升这类应用的运算速度
- 数组对象采用相同的数据类型,有助于节省运算和存储空间
观察:科学计算中,一个维度所有数据的类型往往相同
ndarray是一个多维数组对象,由两部分构成
- 实际的数据
- 描述这些数据的元数据(数据维度、数据类型等)
ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始
ndarray对象的属性
轴(axis): 保存数据的维度;秩(rank):轴的数量
属性 | 说明 |
---|---|
.ndim | 秩,即轴的数量或维度的数量 |
.shape | ndarray对象的尺度,对于矩阵,n行m列 |
.size | ndarray对象元素的个数,相当于.shape中n*m的值 |
.dtype | ndarray对象的元素类型 |
.itemsize | ndarray对象中每个元素的大小,以字节为单位 |
>>> import numpy as np
>>> a = np.array([[0, 1, 2, 3, 4],
[9, 8, 7, 6, 5]])
>>> a.ndim
2
>>> a.shape
(2, 5)
>>> a.size
10
>>> a.dtype
dtype('int32')
>>> a.itemsize
4
ndarray数组的元素类型
数据类型 | 说明 |
---|---|
bool | 布尔类型,True或False |
intc | 与C语言中的int类型一致,一般是int32或int64 |
intp | 用于索引的整数,与C语言中ssize_t一致,int32或int64 |
int8 | 字节长度的整数,取值:[‐128, 127] |
int16 | 16位长度的整数,取值:[‐32768, 32767] |
int32 | 32位长度的整数,取值:[‐2的31次方 , 2的 31次方 ‐1] |
int64 | 64位长度的整数,取值:[‐2的63次方 , 2的 63次方 ‐1] |
uint8 | 8位无符号整数,取值:[0, 255] |
uint16 | 16位无符号整数,取值:[0, 65535] |
uint32 | 32位无符号整数,取值:[0, 2 32 ‐1] |
uint64 | 32位无符号整数,取值:[0, 2 64 ‐1] |
float16 | 16位半精度浮点数:1位符号位,5位指数,10位尾数 |
float32 | 32位半精度浮点数:1位符号位,8位指数,23位尾数 |
float64 | 64位半精度浮点数:1位符号位,11位指数,52位尾数 |
complex64 | 复数类型,实部和虚部都是32位浮点数 |
complex128 | 复数类型,实部和虚部都是64位浮点数 |
对比:Python语法仅支持整数、浮点数和复数3种类型
ndarray为什么要支持这么多种元素类型?
- 科学计算涉及数据较多,对存储和性能都有较高要求
- 对元素类型精细定义,有助于NumPy合理使用存储空间并优化性能
- 对元素类型精细定义,有助于程序员对程序规模有合理评估
非同质的ndarray对象
>>> x = np.array([[0, 1, 2, 3,4],
[9, 8, 7, 6]])
>>> x.shape ndarray数组可以由非同质对象构成
(2,)
>>> x.dtype
dtype('O')
>>> x 非同质ndarray元素为对象类型
array([list([0, 1, 2, 3, 4]), list([9, 8, 7, 6])], dtype=object)
>>> x.itemsize
8
>>> x.size 非同质ndarray对象无法有效发挥NumPy优势,尽量避免使用
2
ndarray数组的创建方法
(1) 从Python中的列表、元组等类型创建ndarray数组
>>> x = np.array([0,1,2,3])
>>> print(x)
[0 1 2 3]
>>> x = np.array((4,5,6,7))
>>> print(x)
[4 5 6 7]
>>> x = np.array([[1,2],[9,8],(0.1,0.2)])
>>> print(x)
[[ 1. 2. ]
[ 9. 8. ]
[ 0.1 0.2]]
(2)使用NumPy中函数创建ndarray数组,如:arange, ones, zeros等
函数 | 说明 |
---|---|
np.arange(n) | 类似range()函数,返回ndarray类型,元素从0到n‐1 |
np.ones(shape) | 根据shape生成一个全1数组,shape是元组类型 |
np.zeros(shape) | 根据shape生成一个全0数组,shape是元组类型 |
np.full(shape,val) | 根据shape生成一个数组,每个元素值都是val |
np.eye(n) | 创建一个正方的n*n单位矩阵,对角线为1,其余为0 |
np.ones_like(a) | 根据数组a的形状生成一个全1数组 |
np.zeros_like(a) | 根据数组a的形状生成一个全0数组 |
np.full_like(a,val) | 根据数组a的形状生成一个数组,每个元素值都是val |
np.linspace() | 根据起止数据等间距地填充数据,形成数组 |
np.concatenate() | 将两个或多个数组合并成一个新的数组 |
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.ones((3,6))
array([[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1.]])
>>> np.zeros((3,6),dtype=np.int32)
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
>>> np.eye(5)
array([[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])
>>> np.ones((2,3))
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a = np.linspace(1,10,4)
>>> a
array([ 1., 4., 7., 10.])
>>> b = np.linspace(1,10,4,endpoint=False)
>>> b
array([ 1. , 3.25, 5.5 , 7.75])
>>> c = np.concatenate((a,b))
>>> c
array([ 1. , 4. , 7. , 10. , 1. , 3.25, 5.5 , 7.75])
>>>
ndarray数组的变换
对于创建后的ndarray数组,可以对其进行维度变换和元素类型变换
ndarray数组的维度变换
方法 | 说明 |
---|---|
.reshape(shape) | 不改变数组元素,返回一个shape形状的数组,原数组不变 |
.resize(shape) | 与.reshape()功能一致,但修改原数组 |
.swapaxes(ax1,ax2) | 将数组n个维度中两个维度进行调换 |
.flatten() | 对数组进行降维,返回折叠后的一维数组,原数组不变 |
>>> import numpy as np
>>> a = np.ones((2,3,4),dtype=np.int32)
>>> a.reshape((3,8))
array([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1]])
>>> a
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]])
>>> a.resize((3,8))
>>> a
array([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1]])
>>> a.flatten()
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1])
>>> a
array([[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
ndarray数组的类型变换
new_a = a.astype(new_type)
astype()方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致
>>> a = np.ones((2,3,4),dtype=np.int)
>>> a
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]])
>>> b = a.astype(np.float)
>>> b
array([[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]],
[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]])
ndarray数组向列表的转换
ls = a.tolist()
>>> a = np.full((2,3,4),25,dtype=np.int32)
>>> a
array([[[25, 25, 25, 25],
[25, 25, 25, 25],
[25, 25, 25, 25]],
[[25, 25, 25, 25],
[25, 25, 25, 25],
[25, 25, 25, 25]]])
>>> a.tolist()
[[[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]], [[25, 25, 25, 25], [25, 25, 25, 25], [25, 25, 25, 25]]]
ndarray数组的操作
数组的索引和切片
索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程
一维数组的索引和切片:与Python的列表类似
>>> a = np.array([9,8,7,6,5])
>>> a[2]
7
>>> a[1:4:2]
array([8, 6])
多维数组的索引:
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> a[1,2,3]
23
>>> a[-1,-2,3]
19
多维数组的切片:
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> a[:, 1,-3]
array([ 5, 17])
>>> a[:, 1:3, :]
array([[[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> a[:, :, ::2]
array([[[ 0, 2],
[ 4, 6],
[ 8, 10]],
[[12, 14],
[16, 18],
[20, 22]]])
ndarray数组的运算
数组与标量之间的运算
数组与标量之间的运算作用于数组的每一个元素
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> a.mean()
11.5
>>> a = a/a.mean()
>>> a
array([[[ 0. , 0.08695652, 0.17391304, 0.26086957],
[ 0.34782609, 0.43478261, 0.52173913, 0.60869565],
[ 0.69565217, 0.7826087 , 0.86956522, 0.95652174]],
[[ 1.04347826, 1.13043478, 1.2173913 , 1.30434783],
[ 1.39130435, 1.47826087, 1.56521739, 1.65217391],
[ 1.73913043, 1.82608696, 1.91304348, 2. ]]])
NumPy一元函数
对ndarray中的数据执行元素级运算的函数
函数 | 说明 |
---|---|
np.abs(x) np.fabs(x) | 计算数组各元素的绝对值 |
np.sqrt(x) | 计算数组各元素的平方根 |
np.square(x) | 计算数组各元素的平方 |
np.log(x) np.log10(x) np.log2(x) | 计算数组各元素的自然对数、10底对数和2底对数 |
np.ceil(x) np.floor(x) | 计算数组各元素的ceiling值 或 floor值 |
np.rint(x) | 计算数组各元素的四舍五入值 |
np.modf(x) | 将数组各元素的小数和整数部分以两个独立数组形式返回 |
np.cos(x) np.cosh(x) np.sin(x) np.sinh(x) np.tan(x) np.tanh(x) | 计算数组各元素的普通型和双曲型三角函数 |
np.exp(x) | 计算数组各元素的指数值 |
np.sign(x) | 计算数组各元素的符号值,1(+), 0, ‐1(‐) |
>>> a = np.arange(24).reshape((2,3,4))
>>> np.square(a)
array([[[ 0, 1, 4, 9],
[ 16, 25, 36, 49],
[ 64, 81, 100, 121]],
[[144, 169, 196, 225],
[256, 289, 324, 361],
[400, 441, 484, 529]]], dtype=int32)
>>> np.modf(a)
(array([[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]],
[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]]]), array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],
[[ 12., 13., 14., 15.],
[ 16., 17., 18., 19.],
[ 20., 21., 22., 23.]]]))
NumPy二元函数
函数 | 说明 |
---|---|
+ ‐ * / ** | 两个数组各元素进行对应运算 |
np.maximum(x,y) np.fmax() np.minimum(x,y) np.fmin() | 元素级的最大值/最小值计算 |
np.mod(x,y) | 元素级的模运算 |
np.copysign(x,y) | 将数组y中各元素值的符号赋值给数组x对应元素 |
> < >= <= == != | 算术比较,产生布尔型数组 |
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> b = np.sqrt(a)
>>> b
array([[[ 0. , 1. , 1.41421356, 1.73205081],
[ 2. , 2.23606798, 2.44948974, 2.64575131],
[ 2.82842712, 3. , 3.16227766, 3.31662479]],
[[ 3.46410162, 3.60555128, 3.74165739, 3.87298335],
[ 4. , 4.12310563, 4.24264069, 4.35889894],
[ 4.47213595, 4.58257569, 4.69041576, 4.79583152]]])
>>> np.maximum(a,b)
array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],
[[ 12., 13., 14., 15.],
[ 16., 17., 18., 19.],
[ 20., 21., 22., 23.]]])
>>> a>b
array([[[False, False, True, True],
[ True, True, True, True],
[ True, True, True, True]],
[[ True, True, True, True],
[ True, True, True, True],
[ True, True, True, True]]], dtype=bool)
>>>