tensorflow的基本用法(六)——神经网络可视化

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是对tensorflow的神经网络训练过程以及神经网络结构进行可视化工作。

#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import tensorflow as tf
import numpy as np

# 创建一个神经网络层
def add_layer(input, in_size, out_size, activation_function = None):
    """
    :param input:
        神经网络层的输入
    :param in_zize:
        输入数据的大小
    :param out_size:
        输出数据的大小
    :param activation_function:
        神经网络激活函数,默认没有
    """
    with tf.name_scope('layer'):
        with tf.name_scope('weights'):
            # 定义神经网络的初始化权重
            Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        with tf.name_scope('biases'):
            # 定义神经网络的偏置
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        with tf.name_scope('W_mul_x_plus_b'):
            # 计算w*x+b
            W_mul_x_plus_b = tf.matmul(input, Weights) + biases
        # 根据是否有激活函数进行处理
        if activation_function is None:
            output = W_mul_x_plus_b
        else:
            output = activation_function(W_mul_x_plus_b)

        return output

# 创建一个具有输入层、隐藏层、输出层的三层神经网络,神经元个数分别为1,10,1
# 创建只有一个特征的输入数据,数据数目为300,输入层
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
# 创建数据中的噪声
noise = np.random.normal(0, 0.05, x_data.shape)
# 创建输入数据对应的输出
y_data = np.square(x_data) + 1 + noise

with tf.name_scope('input'):
    # 定义输入数据,None是样本数目,表示多少输入数据都行,1是输入数据的特征数目
    xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input')
    # 定义输出数据,与xs同理
    ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input')

# 定义一个隐藏层
hidden_layer = add_layer(xs, 1, 10, activation_function = tf.nn.relu)
# 定义输出层
prediction = add_layer(hidden_layer, 10, 1, activation_function = None)

# 求解神经网络参数

# 定义损失函数
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices = [1]))
# 定义训练过程
with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 变量初始化
init = tf.global_variables_initializer()
# 定义Session
sess = tf.Session()
# 将网络结构图写到文件中
writer = tf.summary.FileWriter('logs/', sess.graph)
# 执行初始化工作
sess.run(init)

# 绘制求解的曲线
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

# 进行训练
for i in range(1000):
    # 执行训练,并传入数据
    sess.run(train_step, feed_dict = {xs: x_data, ys: y_data})
    if i % 100 == 0:
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass

        # print sess.run(loss, feed_dict = {xs: x_data, ys: y_data})
        # 计算预测值
        prediction_value = sess.run(prediction, feed_dict = {xs: x_data})
        绘制预测值
        lines = ax.plot(x_data, prediction_value, 'r-', lw = 5)
        plt.pause(0.1)
# 关闭Session
sess.close()

执行结果如下:

优化

在网络结果代码中添加tf.name_scope('name')并将网络结构图写入文件后,可用tensorboard命令查看神经网络的结果图:

tensorboard --logdir=log/

结果如图:

神经网络结构图
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • 简单线性回归 import tensorflow as tf import numpy # 创造数据 x_dat...
    CAICAI0阅读 3,545评论 0 49
  • 楔子:唯有牡丹真国色 金秋十月,商朝大地一片辉煌。有几个老农民正在田间地头聊天。 “听说了吗?那件大事。” “大槐...
    喜糖阅读 215评论 0 1
  • 公司昨天通过决定建立培训体系,主要是做好内训。由于没有这方面的经验,就到处扒资料,看分享。总结了一点,对我们公司来...
    远方与诗zho阅读 228评论 2 1
  • 今天去吃麻辣烫,很逼仄的一家小店。我现在门口愣神,因为煮锅已经满满当当围坐了一圈人。我问老板娘:“没位置了吗?” ...
    我是穿山甲啊阅读 258评论 0 1
  • 【几句闲话写在前】 在自媒体群,最不缺的是热闹。能掌手一个产品(组织)喉舌的,或者自己妙笔能博取关注的,多半有着极...
    在西电_自媒体圈阅读 541评论 0 0