GAN网络的通俗理解

本文浅显理解通俗的GAN模型

核心思想

GAN的核心思想在于博弈,GAN有两部分模型构成,一个是生成模型(G),一个是判别模型(D)。生成模型用于生成一个逼真的样本,判别模型用于判断模型的输入是真是假。通俗来讲,就是生成模型要不断提升自己的造假本领,最终达到骗过判别模型的目的。而判别模型则不断提升自己的判别能力,达到辨别真假的目的,这也就形成了博弈,也就是对抗。

设计者的目的是什么

由上文的分析可以发现,两个网络处于一个矛盾的关系,那么对抗的结果究竟是什么,这个要取决于我们的目的是什么,比如说,我们的目的是生成逼真的人脸图像,那么自然就设计生成网络博弈获胜了。

GAN是如何实现的

在理解GAN网络的一些基本思想后,我们应该如何根据这一思想去设计实现GAN呢?

首先,我们有两个网络模型,生成网络与判别网络,这两个网络是相对独立的,我们要找到的,是如何实现这个博弈的过程,也就是如何对模型进行训练。

这里,我们采用的大方法叫做单独交替迭代训练。

单独交替迭代训练

1.首先,我们有一个简单的生成网络模型(当然未训练时效果很差),那么我们给这个模型一个随机的输入,便会输出得到一个假的样本集,而真的样本集我们本身就有,所以我们得到了真假数据集。

2.在得到真假数据集之后,我们开始对判别模型进行训练,训练过程就是一个有监督的二分类问题,即给定一个样本,能判断出其是真实存在的(真样本),还是利用生成网络生成的(假样本)。

3.在完成判定模型的训练之后,我们要提升生成模型的造假能力,我们将生成网络与训练好的判定网络串接,我们的目标是生成可以迷惑判定模型的图像,所以我们给生成网络一个随机输入,损失函数是判定网络的输出是否为真(是否达到迷惑的效果),根据损失函数,对生成网络的参数进行更新,(注意:这里判定网络的参数是不改变的,因为判定网络是用来评价生成网络的造假能力,计算损失的)

4.完成生成网络的训练之后,再次给定随机输入,得到新的假的数据集,将最新得到真假样本输入给判定网络进行训练,从而完成对判定网络的再一次训练。

5.不断重复上述过程,直到满足设计者设定的训练次数。

至此,就基本实现了一个传统的GAN网络了

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容