机器学习推荐系统实战之电影推荐系统

推荐算法在互联网行业的应用非常广泛,今日头条、美团点评等都有个性化推荐,推荐算法抽象来讲,是一种对于内容满意度的拟合函数,涉及到用户特征和内容特征,作为模型训练所需维度的两大来源,而点击率,页面停留时间,评论或下单等都可以作为一个量化的 Y 值,这样就可以进行特征工程,构建出一个数据集,然后选择一个合适的监督学习算法进行训练,得到模型后,为客户推荐偏好的内容,如头条的话,就是咨询和文章,美团的就是生活服务内容。

可选择的模型很多,如协同过滤,逻辑斯蒂回归,基于DNN的模型,FM等。我们使用的方式是,基于内容相似度计算进行召回,之后通过FM模型和逻辑斯蒂回归模型进行精排推荐,下面就分别说一下,我们做这个电影推荐系统过程中,从数据准备,特征工程,到模型训练和应用的整个过程。

我们实现的这个电影推荐系统,爬取的数据实际上维度是相对少的,特别是用户这一侧的维度,正常推荐系统涉及的维度,诸如页面停留时间,点击频次,收藏等这些维度都是没有的,以及用户本身的维度也相对要少,没有地址、年龄、性别等这些基本的维度,这样我们爬取的数据只有打分和评论这些信息,所以之后我们又从这些信息里再拿出一些统计维度来用。我们爬取的电影数据(除电影详情和图片信息外)是如下这样的形式:

image

这里的数据是有冗余的,又通过如下的代码,对数据进行按维度合并,去除冗余数据条目:

处理主函数,负责将多个冗余数据合并为一条电影数据,将地区,导演,主演,类型,特色等维度数据合并

    def mainfunc():
        try:
            unable_list = []
        with connection.cursor() as cursor:
            sql='select id,name from movie'
            cout=cursor.execute(sql)
            print("数量: "+str(cout))

            for row in cursor.fetchall():
                #print(row[1])
                movieinfo = df[df['电影名'] == row[1]]
                if movieinfo.shape[0] == 0:
                    disable_movie(row[0])
                    print('disable movie ' + str(row[1]))
                else:
                    g = lambda x:movieinfo[x].iloc[0]
                    types = movieinfo['类型'].tolist()
                    types = reduce(lambda x,y:x+'|'+y,list(set(types)))
                    traits = movieinfo['特色'].tolist()
                    traits = reduce(lambda x,y:x+'|'+y,list(set(traits)))
                    update_one_movie_info(type_=types, actors=g('主演'), region=g('地区'), director=g('导演'), trait=traits, rat=g('评分'), id_=row[0])

        connection.commit()
    finally:
        connection.close()

之后开始准备用户数据,我们从用户打分的数据中,统计出每一个用户的打分的最大值,最小值,中位数值和平均值等,从而作为用户的一个附加属性,存储于userproex表中:

   'insert into userproex(userid, rmax, rmin, ravg, rcount, rsum, rmedian) values(\'%s\', %s, %s, %s, %s, %s, %s)' % (userid, rmax, rmin, ravg, rcount, rsum, rmedium)
    'update userproex set rmax=%s, rmin=%s, ravg=%s, rmedian=%s, rcount=%s, rsum=%s where userid=\'%s\'' % (rmax, rmin, ravg, rmedium, rcount, rsum, userid)

以上两个SQL是最终插入表的时候用到的,代表准备用户数据的最终步骤,其余细节可以参考文末的github仓库,不在此赘述,数据处理还用到了一些SQL,以及其他处理细节。

系统上线运行时,第一次是全量的数据处理,之后会是增量处理过程,这个后面还会提到。

我们目前把用户数据和电影的数据的原始数据算是准备好了,下一步开始特征工程。做特征工程的思路是,对type, actors, director, trait四个类型数据分别构建一个频度统计字典,用于之后的one-hot编码,代码如下:

 def get_dim_dict(df, dim_name):
  type_list = list(map(lambda x:x.split('|') ,df[dim_name]))
  type_list = [x for l in type_list for x in l]
  def reduce_func(x, y):
    for i in x:
      if i[0] == y[0][0]:
        x.remove(i)
        x.append(((i[0],i[1] + 1)))
        return x
    x.append(y[0])
    return x
  l = filter(lambda x:x != None, map(lambda x:[(x, 1)], type_list))
  type_zip = reduce(reduce_func, list(l))
  type_dict = {}
  for i in type_zip:
    type_dict[i[0]] = i[1]
  return type_dict

涉及到的冗余数据也要删除

   df_ = df.drop(['ADD_TIME', 'enable', 'rat', 'id', 'name'], axis=1)

将电影数据转换为字典列表,由于演员和导演均过万维,实际计算时过于稀疏,当演员或导演只出现一次时,标记为冷门演员或导演

 movie_dict_list = []
for i in df_.index:
  movie_dict = {}
  #type
  for s_type in df_.iloc[i]['type'].split('|'):
    movie_dict[s_type] = 1
  #actors
  for s_actor in df_.iloc[i]['actors'].split('|'):
    if actors_dict[s_actor] < 2:
      movie_dict['other_actor'] = 1
    else:
      movie_dict[s_actor] = 1
  #regios
  movie_dict[df_.iloc[i]['region']] = 1
  #director
  for s_director in df_.iloc[i]['director'].split('|'):
    if director_dict[s_director] < 2:
      movie_dict['other_director'] = 1
    else:
      movie_dict[s_director] = 1
  #trait
  for s_trait in df_.iloc[i]['trait'].split('|'):
    movie_dict[s_trait] = 1
  movie_dict_list.append(movie_dict)

使用DictVectorizer进行向量化,做One-hot编码

v = DictVectorizer()
X = v.fit_transform(movie_dict_list)

这样的数据,下面做余弦相似度已经可以了,这是特征工程的基本的一个处理,模型所使用的数据,需要将电影,评分,用户做一个数据拼接,构建训练样本,并保存CSV,注意这个CSV不用每次全量构建,而是除第一次外都是增量构建,通过mqlog中类型为'c'的消息,增量构建以comment(评分)为主的训练样本,拼接之后的形式如下:

 USERID cf2349f9c01f9a5cd4050aebd30ab74f
  movieid   10533913
type    剧情|奇幻|冒险|喜剧
actors  艾米·波勒|菲利丝·史密斯|理查德·坎德|比尔·哈德尔|刘易斯·布莱克
region  美国
director    彼特·道格特|罗纳尔多·德尔·卡门
trait   感人|经典|励志
rat 8.7
rmax    5
rmin    2
ravg    3.85714
rcount  7
rmedian 4
TIME_DIS    15

这个数据的actors等字段和上面的处理是一样的,为了之后libfm的使用,在这里需要转换为libsvm的数据格式

 dump_svmlight_file(train_X_scaling, train_y_, train_file)

有很多细节不在这里描述,这样大概的特征工程工作就做好了,之后使用相似度计算,FM,LR进行推荐模型的训练。 具体训练的过程不在这里进行阐述了,项目地址:

https://github.com/GavinHacker/recsys_core

模型使用上遵循先召回,后精排的策略,先通过余弦相似度计算一个相似度矩阵,然后根据这个矩阵,为用户推荐相似的M个电影,在通过训练好的FM,LR模型,对这个M个电影做偏好预估,FM会预估一个用户打分,LR会预估一个点击概率,综合结果推送给用户作为推荐电影。

项目的整体介绍

  • recsys_ui: 前端技术(html5+JavaScript+jquery+ajax)
  • recsys_web: 后端技术(Java+SpringBoot+mysql)
  • recsys_spider: 网络爬虫(python+BeautifulSoup)
  • recsys_sql: 使用SQL数据处理
  • recsys_model: pandas, libFM, sklearn. pandas数据分析和数据清洗,使用libFM,sklearn对模型初步搭建
  • recsys_core: 使用pandas, libFM, sklearn完整的数据处理和模型构建、训练、预测、更新的程序
  • recsys_etl:ETL 处理爬虫增量数据时使用kettle ETL便捷处理数据

为了能够输出一个可感受的系统,我们采购了阿里云服务器作为数据库服务器和应用服务器,在线上搭建了电影推荐系统的第一版,地址是:

www.technologyx.cn

可以注册,也可以使用已有用户:

用户名 密码
gavin 123
gavin2 123
wuenda 123

欢迎登录使用感受一下。

image

设计思路

image

用简单地方式表述一下设计思路,

1.后端服务recsys_web依赖于系统数据库的推荐表‘recmovie’展示给用户推荐内容
2.用户对电影打分后(暂时没有对点击动作进行响应),后台应用会向mqlog表插入一条数据(消息)。
3.新用户注册,系统会插入mqlog中一条新用户注册消息
4.新电影添加,系统会插入mqlog中一条新电影添加消息
5.推荐模块recsys_core会拉取用户的打分消息,并且并行的做以下操作:
a.增量的更新训练样本
b.快速(因服务器比较卡,目前设定了延时)对用户行为进行基于内容推荐的召回
c.训练样本更新模型
d.使用FM,LR模型对Item based所召回的数据进行精排
e.处理新用户注册消息,监听到用户注册消息后,对该用户的属性初始化(统计值)。
f.处理新电影添加消息,更新基于内容相似度而生成的相似度矩阵

注:

模型相关的模块介绍

增量的处理用户comment,即增量处理评分模块

这个模块负责监听来自mqlog的消息,如果消息类型是用户的新的comment,则对消息进行拉取,并相应的把新的comment合并到总的训练样本集合,并保存到一个临时目录
然后更新数据库的config表,把最新的样本集合(csv格式)的路径更新上去

运行截图

image

消息队列的截图

image
把csv处理为libsvm数据

这个模块负责把最新的csv文件,异步的处理成libSVM格式的数据,以供libFM和LR模型使用,根据系统的性能确定任务的间隔时间

运行截图

image
基于内容相似度推荐

当监听到用户有新的comment时,该模块将进行基于内容相似度的推荐,并按照电影评分推荐

运行截图

image
libFM预测

http://www.libfm.org/

对已有的基于内容推荐召回的电影进行模型预测打分,呈现时按照打分排序

如下图为打分更新

image
逻辑回归预测

对样本集中的打分做0,1处理,根据正负样本平衡,> 3分为喜欢 即1, <=3 为0 即不喜欢,这样使用逻辑回归做是否喜欢的点击概率预估,根据概率排序

image

做了这个电影推荐系统后,感觉算是对自己这么长时间学习机器学习知识做一个综合的实践,有不少的感悟,现在有很多学习机器学习的同学,建议在大家刷论文的同时,也注重在项目中实践,计算机科学,虽然叫做科学,实际却是一门实践性学科,一些AI顶级大牛,他们并不是数学家,也不是理论家,大多是从理论和实践结合这条路成就的,和金庸小说中的武林绝技是一个道理。

https://www.cnblogs.com/gavinsp/p/recsys.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容