ConcurrentHashMap

1.什么是ConcurrentHashMap

ConcurrentHashMap是java.util.concurrent包下AbstractMap的一个子类,此类遵守与Hashtable相同的功能规范,并且包括对应于Hashtable的每个方法的方法版本。

2.ConcurrentHashMap的设计思路

在JDK1.7中,ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。

在JDK1.8中,取消了Segment分段锁的数据结构,取而代之的是数组+链表(红黑树)的结构。对每个数组元素加锁。

3.ConcurrentHashMap的方法

Get方法:

//JDK1.7 get方法
public V get(Object key) {
    Segment<K,V> s; 
    HashEntry<K,V>[] tab;
    int h = hash(key); //找出对应的segment的位置
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {  //使用Unsafe获取对应的Segmen
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) { //找出对应的HashEntry,从头开始遍历
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象。
3.再次通过hash值,定位到Segment当中数组的具体位置。

//JDK1.8 get方法
public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

1.首先定位到table[]中的i。
2.若table[i]存在,则继续查找。
3.首先比较链表头部,如果是则返回。
4.然后如果为红黑树,查找树。
5.最后再循环链表查找。

Put方法:

//JDK1.7 put方法
//将一个HashEntry放入到该Segment中,使用自旋机制,减少了加锁的可能性
   final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        HashEntry<K,V> node = tryLock() ? null :
            scanAndLockForPut(key, hash, value); //如果加锁失败,则调用该方法
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash; //同hashMap相同的哈希定位方式
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) { 
            //若不为null,则持续查找,知道找到key和hash值相同的节点,将其value更新
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else { //若头结点为null
                    if (node != null) //在遍历key对应节点链时没有找到相应的节点
                        node.setNext(first);
                        //当前修改并不需要让其他线程知道,在锁退出时修改自然会
                        //更新到内存中,可提升性能
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node); //如果超过阈值,则进行rehash操作
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }

1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象。
3.获取可重入锁。
4.再次通过hash值,定位到Segment当中数组的具体位置。
5.插入或覆盖HashEntry对象。
6.释放锁。

//JDK1.8 put方法

 public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

1.参数校验。
2.若table[]未创建,则初始化。
3.当table[i]后面无节点时,直接创建Node(无锁操作)。
4.如果当前正在扩容,则帮助扩容并返回最新table[]。
5.然后在链表或者红黑树中追加节点。
6.最后还回去判断是否到达阀值,如到达变为红黑树结构。

Size方法:

//JDK1.7 size方法,求出所有的HashEntry的数目
    public int size() {
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

1.遍历所有的Segment。
2.把Segment的元素数量累加起来。
3.把Segment的修改次数累加起来。
4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。
5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。
6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。
7.释放锁,统计结束。

//JDK1.8 size方法
    public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }
    // 1.8加入的API  
    public long mappingCount() {  
        long n = sumCount();  
        return (n < 0L) ? 0L : n; // ignore transient negative values  
    }  

    final long sumCount() {  
        CounterCell[] as = counterCells; CounterCell a;  
        long sum = baseCount;  
        if (as != null) {  
            for (int i = 0; i < as.length; ++i) {  
                if ((a = as[i]) != null)  
                    sum += a.value;  
            }  
        }  
        return sum;  
    }  

1.每个table[i]都有一个CounterCell与之对应。
2.把所有的table[i] 加在一起。

4.ConcurrentHashMap和HashMap以及HashTable的区别

HashMap: 线程不安全,在多线程情况下,HashMap在做put操作时,会在扩容时形成环状链表,这样在进行get操作时会引起死循环;HashMap的key值和value值都可以是null;

HashTable: HashTable和HashMap的实现原理几乎一样,HashTable是线程安全的,但是实现原理是在整个方法上加锁,这样导致性能非常差;HashTable不允许key和value为null;

ConcurrentHashMap:所采用的"分段锁"思想,不会存在锁竞争问题,可以提高效率

5.总结

ConcurrentHashMap是一种线程安全且高效的哈希表的解决方案,相比HashTable的全表锁在性能上的提升非常大。

6.引用

第一次写博客,找了很多好的博客,跟着博客去查找jdk源码,可以更快的理解其中的含义。
参考:
http://tool.oschina.net/apidocs/apidoc?api=jdk-zh
https://blog.csdn.net/fouy_yun/article/details/77816587
http://www.importnew.com/22007.html
http://www.sohu.com/a/205451532_684445
http://www.cnblogs.com/yydcdut/p/3959815.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容