sparksql DataSet和DataFrame

Dataset是分布式数据集合。Dataset是Spark1.6新增的接口,用以提供RDDs(强类型,有使用强大的lambda函数的能力)的优点和Spark SQL的经优化的执行引擎的优点。Dataset可以从JVM对象进行构造并通过转换函数(如map,flatmap,filter等)进行操作。DatasetAPI支持ScalaJava。Python不支持Dataset API。但因为Python本身的动态性,DatasetAPI的许多优点都已经可用(比如,你可以通过名字很自然的访问一行的某一个字段,如row.columnName),R的情况与此类似。

Dataset与RDD很像,不同的是它并不使用Java序列化或者Kryo,而是使用特殊的编码器来为网络间的处理或传输的对象进行序列化。对转换一个对象为字节的过程来说编码器和标准系列化器都是可靠的,编码器的代码是自动生成并且使用了一种格式,这种格式允许Spark在不需要将字节解码成对象的情况下执行很多操作,如filtering、sorting和hashing等。

DataFrame是Dataset组织成列的数据集。它在概念上相当于关系型数据库中的表,或者R/Python中的数据帧,但是在底层进行了更多的优化。DataFrames可以从多种数据源创建,例如:结构化数据文件、Hive中的表、外部数据库或者已存在的RDDs。DataFrame API支持Scala、Java、Python和R。在Scala和Java中DataFrame其实是Dataset的RowS的形式的表示。在Scala API中,DataFrame仅仅是Dataset[Row]的别名。但在Java中,使用者需要使用Dataset来表示一个DataFrame。

但是 DataFrame 出来后发现有些情况下 RDD 可以表达的逻辑用 DataFrame 无法表达。比如 要对 group by 或 join 后的结果用自定义的函数,可能用 SQL 是无法表达的。如下代码:

case class ClassData(a: String, b: Int)

case class ClassNullableData(a: String, b: Integer)

val ds = Seq(ClassData("a", 1), ClassData("a", 2)).toDS()

val agged = ds.groupByKey(d => ClassNullableData(d.a, null))

.mapGroups {

case (key, values) => key.a + values.map(_.b).sum

}

中间处理过程的数据是自定义的类型,并且 groupby 后的聚合逻辑也是自定义的,故用 SQL 比较难以表达,所以提出了 Dataset API。Dataset API 扩展 DataFrame API 支持静态类型和运行已经存在的 Scala 或 Java 语言的用户自定义函数。同时 Dataset 也能享受 Spark SQL 里所有性能 带来的提升。

Spark SQL的Scala接口支持自动的将一个包含case class的RDD转换为DataFrame。这个case class定义了表结构。Caseclass的参数名是通过反射机制读取,然后变成列名。Caseclass可以嵌套或者包含像Seq或Array之类的复杂类型。这个RDD可以隐式的转换为一个DataFrame,然后被注册为一张表。这个表可以随后被SQL的statement使用。

Spark SQL支持两种将已存在的RDD转化为Dataset的方法。第一种方法使用反射推断包含特定类型对象的RDD的结构。这种基于反射的方法代码更加简洁,并且当你在写Spark程序的时候已经知道RDD的结构的情况下效果很好。

第二种创建Dataset的方法是通过编程接口建立一个结构,然后将它应用于一个存在的RDD。虽然这种方法更加繁琐,但它允许你在运行之前不知道其中的列和对应的类型的情况下构建Dataset。

DataFrame和DataSet可以相互转化,df.as[ElementType]这样可以把DataFrame转化为DataSet,ds.toDF()这样可以把DataSet转化为DataFrame。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容