MySQL每秒57万的写入_带你飞

摘要:一、需求 一个朋友接到一个需求,从大数据平台收到一个数据写入在20亿+,需要快速地加载到MySQL中,供第二天业务展示使用。 二、实现再分析 对于单表20亿, 在MySQL运维,说真的这块目前涉及得比较少,也基本没什么经验,但对于InnoDB单表Insert 如果内存大于数据情况下,可以维持在10万-15万行写入。

一、需求

一个朋友接到一个需求,从大数据平台收到一个数据写入在20亿+,需要快速地加载到MySQL中,供第二天业务展示使用。

二、实现再分析

对于单表20亿, 在MySQL运维,说真的这块目前涉及得比较少,也基本没什么经验,但对于InnoDB单表Insert 如果内存大于数据情况下,可以维持在10万-15万行写入。 但很多时间我们接受的项目还是数据超过内存的。 这里使用XeLabs TokuDB做一个测试。

三、XeLabs TokuDB介绍

项目地址: https://github.com/XeLabs/tokudb

相对官方TokuDB的优化:

内置了jemalloc 内存分配

引入更多的内置的TokuDB性能指标

支持Xtrabackup备份

引入ZSTD压缩算法

支持TokuDB的binlog_group_commit特性

四、测试表

TokuDB核心配置:

loose_tokudb_cache_size=4G

loose_tokudb_directio=ON

loose_tokudb_fsync_log_period=1000

tokudb_commit_sync=0

表结构

CREATE TABLE `user_summary` (

`user_id` bigint(20) unsigned NOT NULL COMMENT '用户id/手机号',

`weight` varchar(5) DEFAULT NULL COMMENT '和码体重(KG)',

`level` varchar(20) DEFAULT NULL COMMENT '重量级',

`beat_rate` varchar(12) DEFAULT NULL COMMENT '击败率',

`level_num` int(10) DEFAULT NULL COMMENT '同吨位人数',

UNIQUE KEY `u_user_id` (`user_id`)

) ENGINE=TokuDB DEFAULT CHARSET=utf8

利用load data写入数据

root@localhost [zst]>LOAD DATA INFILE '/u01/work/134-136.txt' \

INTO TABLE user_summary(user_id, weight, level, beat_rate,level_num);

Query OK, 200000000 rows affected (5 min 48.30 sec)

Records: 200000000 Deleted: 0 Skipped: 0 Warnings: 0

计算一下每秒写入速度:

root@localhost [zst]>select 200000000/(5*60+48.30);

+------------------------+

| 200000000/(5*60+48.30) |

+------------------------+

| 574217.6285 |

+------------------------+

1 row in set (0.00 sec)

文件大小:

-rw-r--r-- 1 root root 8.5G 11月 25 20:05 134-136.txt

-rw-r----- 1 mysql mysql 8.6K 11月 25 20:44 user_summary.frm

-rw-r----- 1 mysql mysql 3.5G 11月 25 20:51 user_summary_main_229_1_1d_B_0.tokudb

实际文件8.5G,写入TokuDB大小3.5G,只是接近于一半多点的压缩量。 对于20亿数据写入,实际测试在58分钟多点就可以完成。可以满足实际需求,另外对于磁盘IO比较好的机器(SSD类盘,云上的云盘),如果内存和数据差不多情况,这量级数据量测试在Innodb里需要添加自增列,可以在3个小多一点完成。 从最佳实战上来看,Innodb和TokuDB都写入同样的数据,InnoDB需要花大概是TokuDB3-4倍时间。文件大小区别,同样20亿数据:

-rw-r----- 1 mysql mysql 35G 11月 25 23:29 user2_main_26a_1_1d_B_0.tokudb

-rw-r----- 1 mysql mysql 176G 11月 26 03:32 user5.ibd

文件大小在5倍大小的区别。

测试结论:

利用TokuDB在某云环境中8核8G内存,500G高速云盘环境,多次测试可以轻松实现57万每秒的写入量。

另外测试几种场景也供大家参考: 如果在TokuDB中使用带自增的主键,主键无值让MySQL内部产生写入速度,下降比较明显,同样写入2亿数据,带有自建主键:

root@localhost [zst]>CREATE TABLE `user3` (

-> `user_id` bigint(20) unsigned NOT NULL COMMENT '用户id/手机号',

-> `weight` varchar(5) DEFAULT NULL COMMENT '和码体重(KG)',

-> `level` varchar(20) DEFAULT NULL COMMENT '重量级',

-> `beat_rate` varchar(12) DEFAULT NULL COMMENT '击败率',

-> `level_num` int(10) DEFAULT NULL COMMENT '同吨位人数',

-> `id` bigint(20) NOT NULL AUTO_INCREMENT,

-> PRIMARY KEY (`id`),

-> UNIQUE KEY `u_user_id` (`user_id`)

-> ) ENGINE=TokuDB;

Query OK, 0 rows affected (0.03 sec)

root@localhost [zst]>LOAD DATA INFILE '/u01/work/134-136.txt' INTO TABLE user3(user_id, weight, level, beat_rate,level_num);

Query OK, 200000000 rows affected (22 min 43.62 sec)

Records: 200000000 Deleted: 0 Skipped: 0 Warnings: 0

同样的数据写入在主键自增无值产生时,不能使用TokuDB的 Bulk loader data特性,相当于转换为了单条的Insert实现,所以效果上慢太多。

关于TokuDB Bulk Loader前提要求,这个表是空表,对于自增列,如自增列有值的情况下,也可以使用。 建议实际使用中,如果自增列有值的情况下,可以考虑去除自增属性,改成唯一索引,这样减少自增的一些处理逻辑,让TokuDB能跑地更快一点。 另外在Bulk Loader处理中为了追求更快速的写入,压缩方面并不是很好。

关于TokuDB Bulk Loader :https://github.com/percona/PerconaFT/wiki/TokuFT-Bulk-Loader

五、测试环境说明

测试使用CentOS7环境,编译的XeLabs TokuDB版本百度云地址:https://pan.baidu.com/s/1qYRyH3I 。

原文发布时间为:2017-12-5

本文作者:吴炳锡

本文来自云栖社区合作伙伴“老叶茶馆”,了解相关信息可以关注“老叶茶馆”微信公众号

如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:yqgroup@service.aliyun.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

原文链接

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容