十五、线程池(六)自动创建线程池的弊端

1、为什么不应该自动创建线程池?

所谓的自动创建线程池就是直接调用 Executors 的各种方法来生成常见的线程池,例如 Executors.newCachedThreadPool()。但这样做是有一定风险的,接下来就来逐一分析自动创建线程池可能带来哪些问题。

FixedThreadPool

首先来看第一种线程池 FixedThreadPool, 它是线程数量固定的线程池,如源码所示,newFixedThreadPool 内部实际还是调用了 ThreadPoolExecutor 构造函数。

public static ExecutorService newFixedThreadPool(int nThreads) { 
    return new ThreadPoolExecutor(nThreads, nThreads,0L, 
               TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

通过往构造函数中传参,创建了一个核心线程数和最大线程数相等的线程池,它们的数量也就是传入的参数,这里的重点是使用的队列是容量没有上限的 LinkedBlockingQueue,如果对任务的处理速度比较慢,那么随着请求的增多,队列中堆积的任务也会越来越多,最终大量堆积的任务会占用大量内存,并发生 OOM ,也就是OutOfMemoryError,这几乎会影响到整个程序,会造成很严重的后果。

SingleThreadExecutor

第二种线程池是 SingleThreadExecutor,来分析下创建它的源码。

public static ExecutorService newSingleThreadExecutor() { 
    return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,0L, 
               TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}

可以看出,newSingleThreadExecutor 和 newFixedThreadPool 的原理是一样的,只不过把核心线程数和最大线程数都直接设置成了 1,但是任务队列仍是无界的 LinkedBlockingQueue,所以也会导致同样的问题,也就是当任务堆积时,可能会占用大量的内存并导致 OOM。

CachedThreadPool

第三种线程池是 CachedThreadPool,创建它的源码下所示。

public static ExecutorService newCachedThreadPool() { 
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,
               new SynchronousQueue<Runnable>());
}

这里的 CachedThreadPool 和前面两种线程池不一样的地方在于任务队列使用的是 SynchronousQueue,SynchronousQueue 本身并不存储任务,而是对任务直接进行转发,这本身是没有问题的,但会发现构造函数的第二个参数被设置成了 Integer.MAX_VALUE,这个参数的含义是最大线程数,所以由于 CachedThreadPool 并不限制线程的数量,当任务数量特别多的时候,就可能会导致创建非常多的线程,最终超过了操作系统的上限而无法创建新线程,或者导致内存不足。

ScheduledThreadPool 和 SingleThreadScheduledExecutor

第四种线程池 ScheduledThreadPool 和第五种线程池 SingleThreadScheduledExecutor 的原理是一样的,创建 ScheduledThreadPool 的源码如下所示。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { 
    return new ScheduledThreadPoolExecutor(corePoolSize);
}

而这里的 ScheduledThreadPoolExecutor 是 ThreadPoolExecutor 的子类,调用的它的构造方法如下所示。

public ScheduledThreadPoolExecutor(int corePoolSize) { 
    super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,new DelayedWorkQueue());
}

通过源码可以看出,它采用的任务队列是 DelayedWorkQueue,这是一个延迟队列,同时也是一个无界队列,所以和 LinkedBlockingQueue 一样,如果队列中存放过的任务,就可能导致 OOM。

这几种自动创建的线程池都存在风险,相比较而言,自己手动创建会更好,因为我们可以更加明确线程池的运行规则,不仅可以选择适合自己的线程数量,更可以在必要的时候拒绝新任务的提交,避免资源耗尽的风险。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343