1.分析
中文的情感分析可以用词林做,词林有一大类(G类)对应心理活动,但是相对于wordnet还是太简单了.因此使用nltk+wordnet的方案,如下:
1)中文分词:结巴分词
2)中英文翻译:wordnet汉语开放词网,可从以下网址下载:
http://compling.hss.ntu.edu.sg/cow/
3)情感分析:wordnet的sentiwordnet组件
4)停用词:参考以下网页,另外加入常用标点符号
http://blog.csdn.net/u010533386/article/details/51458591
2.代码
# encoding=utf-8
import jieba
import sys
import codecs
reload(sys)
import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import sentiwordnet as swn
sys.setdefaultencoding('utf8')
def doSeg(filename) :
f =open(filename, 'r+')
file_list = f.read()
f.close()
seg_list = jieba.cut(file_list)
stopwords= []
forword in open("./stop_words.txt", "r"):
stopwords.append(word.strip())
ll = []
for segin seg_list :
if(seg.encode("utf-8") not in stopwords and seg != ' ' and seg != ''and seg != "\n" and seg != "\n\n"):
ll.append(seg)
returnll
def loadWordNet():
f =codecs.open("./cow-not-full.txt", "rb", "utf-8")
known =set()
for lin f:
ifl.startswith('#') or not l.strip():
continue
row= l.strip().split("\t")
iflen(row) == 3:
(synset, lemma, status) = row
elif len(row) == 2:
(synset, lemma) = row
status = 'Y'
else:
print "illformed line: ", l.strip()
ifstatus in ['Y', 'O' ]:
if not (synset.strip(),lemma.strip()) in known:
known.add((synset.strip(), lemma.strip()))
returnknown
def findWordNet(known, key):
ll =[];
for kkin known:
if(kk[1] == key):
ll.append(kk[0])
returnll
def id2ss(ID):
returnwn._synset_from_pos_and_offset(str(ID[-1:]), int(ID[:8]))
def getSenti(word):
returnswn.senti_synset(word.name())
if __name__ == '__main__' :
known =loadWordNet()
words =doSeg(sys.argv[1])
n = 0
p = 0
forword in words:
ll =findWordNet(known, word)
if(len(ll) != 0):
n1 = 0.0
p1 = 0.0
for wid in ll:
desc = id2ss(wid)
swninfo = getSenti(desc)
p1 = p1 + swninfo.pos_score()
n1 = n1 + swninfo.neg_score()
if (p1 != 0.0 or n1 != 0.0):
print word, '-> n ', (n1 / len(ll)), ", p ", (p1 / len(ll))
p= p + p1 / len(ll)
n= n + n1 / len(ll)
print"n", n, ", p", p
3.待解决的问题
1)结巴分词与wordnet chinese中的词不能一一对应
结巴分词虽然可以导入自定义的词典,但仍有些结巴分出的词,在wordnet找不到对应词义,比如"太后","童子",还有一些组合词如"很早已前","黄山"等等.大多是名词,需要进一步"学习".
临时的解决方案是:将其当作"专有名词"处理
2)一词多义/一义多词
无论是情感分析,还是语义分析,中文或者英文,都需要解决词和义的对应问题.
临时的解决方案是:找到该词的所有语义,取其平均的情感值.另外,结巴也可判断出词性作为进一步参考.
3)语义问题
语义问题是最根本的问题,一方面需要分析句子的结构,另外也和内容也有关,尤其是长文章,经常会使用"先抑后扬""对比分析",这样就比较难以判断感情色彩了.
4.参考:
1)Learning lexical scales:WordNet and SentiWordNet
http://compprag.christopherpotts.net/wordnet.html
2)SentiWordNet Interface