InfluxDB 简单上手(一)

背景

最近公司的监控项目中用到时序数据库,现在简单介绍学习以下,后面再详细研究。

什么是时序数据?

A time series database (TSDB) is a software system that is optimized for storing and serving time series through associated pairs of time(s) and value(s).In some fields, time series may be called profiles, curves, traces or trends. Several early time series databases are associated with industrial applications which could efficiently store measured values from sensory equipment (also referred to as data historians), but now are used in support of a much wider range of applications.

In many cases, the repositories of time-series data will utilize compression algorithms to manage the data efficiently. Although it is possible to store time-series data in many different database types, the design of these systems with time as a key index is distinctly different from relational databases which reduce discrete relationships through referential models.

简单说,时序数据库就是存储时间序列的数据,用来展示一定时期内的趋势、潮流。。。

时序数据库应用场景?

目前以广泛适用于Tesla 自动驾驶、华尔街自动交易算法、智能家居、能够实现日内闪电般运抵的交通网络和纽约市警察局发布的开放数据

  • 自动驾驶汽车持续收集所处环境中的变化数据
  • 自动交易算法持续收集市场的变化数据
  • 智能家居系统持续监控房屋内的变化,调整温度,识别侵入者,对于使用者总是有求必应(“Alexa,播放一些轻松的音乐”)。
  • 零售行业精确高效地监控资产运转状况,使得日内运抵的成本足够低廉且能够为绝大多数人所使用

在过去的 24 个月中,时间序列数据库(TSDB)已经成为增长最快的类别:

1.png

时序数据库类别增长趋势:

2.png

数据来源:https://db-engines.com/en/ranking_categories

现在可以支持技术选型 InfluxDB ;

InfluxDB 上手入门

1、首先假设你已经安装好InfluxDB (自行百度)

2、启动InfluxDB 命令行

进入: /influxdb-1.6.3-1/usr/bin
执行:./influx

3、概念解释

  • database 对应数据库中的库
  • measurement 对应数据库中的表
  • points 表里面的一行数据

Point由时间戳(time)、数据(field)和标签(tags)组成。

  • time:每条数据记录的时间,也是数据库自动生成的主索引;
  • fields:各种记录的值;
  • tags:各种有索引的属性。

还有一个重要的名词:series

所有在数据库中的数据,都需要通过图表来表示,series表示这个表里面的所有的数据 的图标展示。

4、基本操作

创建数据库

create database mydb

显示所有数据库

show databases;

使用数据库

use mydb;

显示该数据库中所有表

show measurements;

第一篇简单上手就到这里,后面逐步剖析原理实现。

语法参考:https://docs.influxdata.com/influxdb/v1.7/query_language/data_exploration/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,110评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,443评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,474评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,881评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,902评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,698评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,418评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,332评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,796评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,968评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,110评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,792评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,455评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,003评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,130评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,348评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,047评论 2 355

推荐阅读更多精彩内容