常见的分布式Id生成器剖析

在高并发或者分表分库情况下怎么保证数据id的幂等性呢?

经常用到的解决方案有以下几种。

微软公司通用唯一识别码(UUID)
Twitter公司雪花算法(SnowFlake)
基于数据库的id自增
对id进行缓存

一、SnowFlake算法

snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。

其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。

snowflake算法所生成的ID结构,如下图:

image.png

整个结构是64位,所以我们在Java中可以使用long来进行存储。

该算法实现基本就是二进制操作,单机每秒内理论上最多可以生成1024*(2^12),也就是409.6万个ID(1024 X 4096 = 4194304)

  • 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

  • 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0

  • 41位时间截(毫秒级)。注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)

  • 这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69

  • 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId

  • 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号

  • 加起来刚好64位,为一个Long型。

  • SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高

    经测试,SnowFlake每秒能够产生26万ID左右。

snowFlake算法的优点:

  1. 生成ID时不依赖于DB,完全在内存生成,高性能高可用。

  2. ID呈趋势递增,后续插入索引树的时候性能较好。

SnowFlake算法的缺点:

依赖于系统时钟的一致性。如果某台机器的系统时钟回拨,有可能造成ID冲突,或者ID乱序

二、基于数据库的id自增

image.png

字段说明:

  • id代表该obj本次set后的maxid

  • 不同业务不同的ID需求可以用obj字段区分,每个obj的ID获取相互隔离,互不影响

  • step 步长,代表每次获取多长ID段到缓存

基本要求:

  • 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求
  • 趋势递增:在MySql InnoDB引擎使用的是聚集索引, 由于多数的RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上应该尽量使用有序的主键保证写入性能
  • 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求
  • 信息安全:如果ID是联系的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞争对手可以直接知道我们一天的单量。所以在这些场景下,会需要ID无规则,不规则。

性能要求:

  • 平均延迟和TP999延迟都要尽可能低
  • 可用性5个9(99.999%)
  • 高QPS

优点:

  • 支持全局唯一、系统唯一、表级别唯一三种形式,绝对不会出现重复ID,且ID整体趋势递增;
  • 大大的降低了数据库的压力,ID生成可以做到每秒生成几万几十万个
  • 一定的高可用,服务采用预分配ID的方案,每次调用分配10000个id到系统缓存集群,即使MySQL宕机,也能容忍一段时间数据不可用;
  • 接入简单,直接通过公司的RPC服务或者HTTP调用即可使用;

缺点:

  • 强依赖数据库,当MySQL服务长时间不可用,那么对公司业务将是一场灾难;

  • 并发性能较低,假设公司业务量急剧增长,idgenerator服务请求并发量增高,而实际上在更新数据库时会触发表锁,可能造成ID获取失败,导致服务不可用;

  • 缺少服务自身监控,无法通过web层的内存数据映射界面实时观测所有号段的下发状态及使用情况

  • 服务仍然是单点

  • 如果服务挂了,服务重启起来之后,继续生成ID可能会不连续,中间出现空洞(服务内存是保存着0,1,2,3,4,5,数据库中max-id是5,分配到3时,服务重启了,下次会从6开始分配,4和5就成了空洞,不过这个问题也不大)

  • 虽然每秒可以生成几万几十万个ID,但毕竟还是有性能上限,无法进行水平扩展

三、UUID

UUID 是指Universally Unique Identifier,翻译为中文是通用唯一识别码,UUID 的目的是让分布式系统中的所有元素都能有唯一的识别信息。如此一来,每个人都可以创建不与其它人冲突的 UUID,就不需考虑数据库创建时的名称重复问题。

定义

UUID 是由一组32位数的16进制数字所构成,是故 UUID 理论上的总数为1632=2128,约等于3.4 x 10123。

也就是说若每纳秒产生1百万个 UUID,要花100亿年才会将所有 UUID 用完

格式

UUID 的十六个八位字节被表示为 32个十六进制数字,以连字号分隔的五组来显示,形式为 8-4-4-4-12,总共有 36个字符(即三十二个英数字母和四个连字号)。例如:

123e4567-e89b-12d3-a456-426655440000

xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx

数字 M的四位表示 UUID 版本,当前规范有5个版本,M可选值为1, 2, 3, 4, 5

数字 N的一至四个最高有效位表示 UUID 变体( variant ),有固定的两位10xx因此只可能取值8, 9, a, b

UUID版本通过M表示,当前规范有5个版本,M可选值为1, 2, 3, 4, 5。这5个版本使用不同算法,利用不同的信息来产生UUID,各版本有各自优势,适用于不同情景。具体使用的信息

  • version 1, date-time & MAC address
  • version 2, date-time & group/user id
  • version 3, MD5 hash & namespace
  • version 4, pseudo-random number
  • version 5, SHA-1 hash & namespace

使用较多的是版本1和版本4,其中版本1使用当前时间戳和MAC地址信息。版本4使用(伪)随机数信息,128bit中,除去版本确定的4bit和variant确定的2bit,其它122bit全部由(伪)随机数信息确定。

因为时间戳和随机数的唯一性,版本1和版本4总是生成唯一的标识符。若希望对给定的一个字符串总是能生成相同的 UUID,使用版本3或版本5。

随机 UUID 的重复机率

Java中 UUID 使用版本4进行实现,所以由 java.util.UUID类产生的 UUID,128个比特中,有122个比特是随机产生,4个比特标识版本被使用,还有2个标识变体被使用。利用 生日悖论,可计算出两笔 UUID 拥有相同值的机率约为

image

其中x为 UUID 的取值范围,n为 UUID 的个数。

以下是以 x = 2122 计算出n笔 UUID 后产生碰撞的机率:

n 机率
68,719,476,736 = 236 0.0000000000000004 (4 x 10-16)
2,199,023,255,552 = 241 0.0000000000004 (4 x 10-13)
70,368,744,177,664 = 246 0.0000000004 (4 x 10-10)

换句话说,每秒产生10亿笔 UUID ,100年后只产生一次重复的机率是50%。如果地球上每个人都各有6亿笔 UUID,发生一次重复的机率是50%。与被陨石击中的机率比较的话,已知一个人每年被陨石击中的机率估计为170亿分之1,也就是说机率大约是0.00000000006 (6 x 10-11),等同于在一年内生产2000亿个 UUID 并发生一次重复。

参考文档:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容