kraken2bracken build db

kraken2 github:
https://github.com/DerrickWood/kraken2/blob/master/docs/MANUAL.markdown

环境

import argparse
import gzip
import itertools
import os
import pathlib
import textwrap
import sys
from Bio import Phylo
source /hwfsxx1/ST_HN/P18Z10200N0423/huty/software/miniconda3_2/etc/profile.d/conda.sh
conda activate py38
conda install -c bioconda biopython

GTDB注释

source /hwfssz1/**/hutongyuan/softwares/miniconda3/etc/profile.d/conda.sh
conda activate gtdbtk
# 配置数据库
echo "export GTDBTK_DATA_PATH=/hwfssz1/**/hutongyuan/databases/release207_v2/" > /hwfssz1/**/hutongyuan/softwares/miniconda3/envs/gtdbtk/etc/conda/activate.d/gtdbtk.sh
# 注释
gtdbtk classify_wf \
--cpus 32 \
-x fa \
--genome_dir bins_drep_comp70/dereplicated_genomes/ \
--out_dir anno_drep_comp70/

处理注释文件
很多潜在新物种没有注释信息,用MAG号作为补充
存在同种注释,种水平可全部加上MAG号区分

cp /hwfssz5/**/anno_drep_comp70/classify/gtdbtk.bac120.summary.tsv ./
cp /hwfssz5/**/anno_drep_comp70/classify/gtdbtk.ar53.summary.tsv ./
# 提取合并细菌,古菌
touch anno.bac.ar.tsv
cat gtdbtk.bac120.summary.tsv | sed '1d' | awk -F"\t" '{OFS="\t"}{print $1, $2}' >> anno.bac.ar.tsv
cat gtdbtk.ar53.summary.tsv | sed '1d' | awk -F"\t" '{OFS="\t"}{print $1, $2}' >> anno.bac.ar.tsv
# 补充未注释的部分
#!/usr/bin/env python3
import re,sys,os
with open("anno_edit.txt", 'w') as o:
    with open("anno.bac.ar.tsv", 'r') as infile:
        for line in infile:
            line = line.strip()
            line = re.split(r'[\t|;]', line)
            #if line[7] == "s__":
            line[7] = "s__" + line[0]
            if line[6] == "g__":
                line[6] = "g__" + line[0]
            if line[5] == "f__":
                line[5] = "f__" + line[0]
            if line[4] == "o__":
                line[4] = "o__" + line[0]
            if line[3] == "c__":
                line[3] = "c__" + line[0]
            o.write("{}\t{};{};{};{};{};{};{}\n".format(line[0],line[1],line[2],line[3],line[4],line[5],line[6],line[7]))

gtdb注释文件要求:
1 中间是制表符
2 末尾不留空行

kraken2建库准备

source /hwfssz1/ST_HEALTH/P18Z10200N0423/hutongyuan/softwares/miniconda3/etc/profile.d/conda.sh
conda activate python3.7

bins="/hwfssz5/ST_HEALTH/P18Z10200N0423/hutongyuan/analysis/fish/02_bin/bins_drep_comp70/dereplicated_genomes"
python ./tax_gtdb_final.py \
--gtdb anno_edit.txt \
--assemblies $bins/ \
--nodes nodes.dmp \
--names names.dmp \
--kraken_dir kraken_library
bash ./sc_buildk2db.sh

过程

Loading GTDB taxonomy:
    336 taxa found

Assigning tax IDs:
    domains:       2
    phyla:        13
    classes:      19
    orders:       38
    families:     56
    genera:       88
    species:     120

Writing taxonomy nodes to nodes.dmp
Writing taxonomy names to names.dmp

Searching for an assembly for each accession:
    120 / 120 assemblies found

Making Kraken assembly directory:
    120 / 120 assemblies

kraken_library里就是drep的MAG

建库

conda activate kraken2
for file in kraken_library/*.fa
do
    kraken2-build --add-to-library $file --db kraken_database
done

mkdir kraken_database/taxonomy
mv names.dmp kraken_database/taxonomy
mv nodes.dmp kraken_database/taxonomy

## kraken2-build --build --db kraken_database
vi build_kk2.sh
source /hwfssz1/ST_HEALTH/P18Z10200N0423/hutongyuan/softwares/miniconda3/etc/profile.d/conda.sh
conda activate kraken2
kraken2-build --build --db kraken_database --threads 4
qsub -cwd -l vf=10G,p=4 -q st.q -P P18Z10200N0423 -binding linear:4 build_kk2.sh

过程

Creating sequence ID to taxonomy ID map (step 1)...
Sequence ID to taxonomy ID map complete. [0.762s]
Estimating required capacity (step 2)...
Estimated hash table requirement: 1491144408 bytes
Capacity estimation complete. [3m54.774s]
Building database files (step 3)...
Taxonomy parsed and converted.
CHT created with 11 bits reserved for taxid.
Completed processing of 282544 sequences, 1399196925 bp
Writing data to disk...  complete.
Database files completed. [9m25.653s]
Database construction complete. [Total: 13m35.437s]

generate bracken distribution

# Let's continue to generate bracken distribution for profile correction
cd kraken_database
kraken2 --db=./ --threads=4 <( find -L library \( -name "*.fna" -o -name "*.fasta" -o -name "*.fa" \) -exec cat {} + ) > database.kraken

过程

Loading database information... done.
41646 sequences (388.85 Mbp) processed in 37.970s (65.8 Kseq/m, 614.45 Mbp/m).
  41646 sequences classified (100.00%)
  0 sequences unclassified (0.00%)

readlen=50、100、200、300(这一步是后面bracken可能会用到的)

conda activate bracken
kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database50mers.kraken -l 50 -t 1
kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database100mers.kraken -l 100 -t 1
kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database200mers.kraken -l 200 -t 1
kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database300mers.kraken -l 300 -t 1

generate_kmer_distribution.py -i database50mers.kraken -o database50mers.kmer_distrib
generate_kmer_distribution.py -i database100mers.kraken -o database100mers.kmer_distrib
generate_kmer_distribution.py -i database200mers.kraken -o database200mers.kmer_distrib
generate_kmer_distribution.py -i database300mers.kraken -o database300mers.kmer_distrib

# rm -r ../kraken_library/

过程

(bracken) [hutongyuan@cngb-xcompute-0-18 kraken_database]$ kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database50mers.kraken -l 50 -t 1
        >>STEP 0: PARSING COMMAND LINE ARGUMENTS
                Taxonomy nodes file: ./taxonomy/nodes.dmp
                Seqid file:          seqid2taxid.map
                Num Threads:         1
                Kmer Length:         31
                Read Length:         50
        >>STEP 1: READING SEQID2TAXID MAP
                282544 total sequences read
        >>STEP 2: READING NODES.DMP FILE
                1056 total nodes read
        >>STEP 3: CONVERTING KMER MAPPINGS INTO READ CLASSIFICATIONS:
                50mers, with a database built using 31mers
                282546 sequences converted (finished: )oncoct_E9_bin.21_k119_17748|kraken:taxid|595)97)))
        Time Elaped: 1 minutes, 23 seconds, 0.00000 microseconds
        =============================
(bracken) [hutongyuan@cngb-xcompute-0-18 kraken_database]$ kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database100mers.kraken -l 100 -t 1
        >>STEP 0: PARSING COMMAND LINE ARGUMENTS
                Taxonomy nodes file: ./taxonomy/nodes.dmp
                Seqid file:          seqid2taxid.map
                Num Threads:         1
                Kmer Length:         31
                Read Length:         100
        >>STEP 1: READING SEQID2TAXID MAP
                282544 total sequences read
        >>STEP 2: READING NODES.DMP FILE
                1056 total nodes read
        >>STEP 3: CONVERTING KMER MAPPINGS INTO READ CLASSIFICATIONS:
                100mers, with a database built using 31mers
                282546 sequences converted (finished: )oncoct_E9_bin.21_k119_17748|kraken:taxid|595)97)))
        Time Elaped: 2 minutes, 29 seconds, 0.00000 microseconds
        =============================
(bracken) [hutongyuan@cngb-xcompute-0-18 kraken_database]$ kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database200mers.kraken -l 200 -t 1
        >>STEP 0: PARSING COMMAND LINE ARGUMENTS
                Taxonomy nodes file: ./taxonomy/nodes.dmp
                Seqid file:          seqid2taxid.map
                Num Threads:         1
                Kmer Length:         31
                Read Length:         200
        >>STEP 1: READING SEQID2TAXID MAP
                282544 total sequences read
        >>STEP 2: READING NODES.DMP FILE
                1056 total nodes read
        >>STEP 3: CONVERTING KMER MAPPINGS INTO READ CLASSIFICATIONS:
                200mers, with a database built using 31mers
                282546 sequences converted (finished: )oncoct_E9_bin.21_k119_17748|kraken:taxid|595)97)))
        Time Elaped: 4 minutes, 12 seconds, 0.00000 microseconds
        =============================
(bracken) [hutongyuan@cngb-xcompute-0-18 kraken_database]$ kmer2read_distr --seqid2taxid seqid2taxid.map --taxonomy ./taxonomy --kraken database.kraken --output database300mers.kraken -l 300 -t 1
        >>STEP 0: PARSING COMMAND LINE ARGUMENTS
                Taxonomy nodes file: ./taxonomy/nodes.dmp
                Seqid file:          seqid2taxid.map
                Num Threads:         1
                Kmer Length:         31
                Read Length:         300
        >>STEP 1: READING SEQID2TAXID MAP
                282544 total sequences read
        >>STEP 2: READING NODES.DMP FILE
                1056 total nodes read
        >>STEP 3: CONVERTING KMER MAPPINGS INTO READ CLASSIFICATIONS:
                300mers, with a database built using 31mers
                282546 sequences converted (finished: )oncoct_E9_bin.21_k119_17748|kraken:taxid|595)97)))
        Time Elaped: 5 minutes, 39 seconds, 0.00000 microseconds
        =============================
(bracken) [hutongyuan@cngb-login-0-8 kraken_database]$ generate_kmer_distribution.py -i database50mers.kraken -o database50mers.kmer_distrib
PROGRAM START TIME: 12-04-2022 14:10:33
...473 total genomes read from kraken output file
...creating kmer counts file -- lists the number of kmers of each classification per genome
...creating kmer distribution file -- lists genomes and kmer counts contributing to each genome
PROGRAM END TIME: 12-04-2022 14:10:35
(bracken) [hutongyuan@cngb-login-0-8 kraken_database]$ generate_kmer_distribution.py -i database100mers.kraken -o database100mers.kmer_distrib
PROGRAM START TIME: 12-04-2022 14:10:35
...473 total genomes read from kraken output file
...creating kmer counts file -- lists the number of kmers of each classification per genome
...creating kmer distribution file -- lists genomes and kmer counts contributing to each genome
PROGRAM END TIME: 12-04-2022 14:10:37
(bracken) [hutongyuan@cngb-login-0-8 kraken_database]$ generate_kmer_distribution.py -i database200mers.kraken -o database200mers.kmer_distrib
PROGRAM START TIME: 12-04-2022 14:10:37
...473 total genomes read from kraken output file
...creating kmer counts file -- lists the number of kmers of each classification per genome
...creating kmer distribution file -- lists genomes and kmer counts contributing to each genome
PROGRAM END TIME: 12-04-2022 14:10:38
(bracken) [hutongyuan@cngb-login-0-8 kraken_database]$ generate_kmer_distribution.py -i database300mers.kraken -o database300mers.kmer_distrib
PROGRAM START TIME: 12-04-2022 14:10:39
...473 total genomes read from kraken output file
...creating kmer counts file -- lists the number of kmers of each classification per genome
...creating kmer distribution file -- lists genomes and kmer counts contributing to each genome
PROGRAM END TIME: 12-04-2022 14:10:40
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容