微服务保障数据一致性的模式

在之前的文章中,我们介绍了烟囱式到SOA再到微服务以及 从平台到中台:企业IT架构转型之道两篇文章,这里继续了解和介绍微服务。

一致性问题实例


  • 案例1:下订单和扣库存

如果先下订单,扣库存失败,那么会导致超卖。反之会导致少卖。两种情况都会导致运营成本增加。


  • 案例2:调用超时

服务化的系统调用常常因为网络问题导致系统间调用超时,即使是网络状况良好的机房,在大量并发的情况下,同步/异步调用超时也是家常便饭。所以在调用超时时,系统不知道调用的服务是否完成了预设的功能。


  • 案例3:缓存和数据库不一致

参考我之前写的DDBS 分布式DB与Cache一致性以及DDBS 缓存架构


  • 案例4:冗余表不一致

参考DDBS 冗余表数据一致性

解决一致性问题的模式和思路

  1. 酸碱平衡理论
    也就是ACID和BASE。参考我的文章:DDBS CAPDDBS BASE

  2. 分布式一致性协议

这方面协议有很多,比如:
2PC
3PC
Paxos
ZAB

微服务保证最终一致性的模式

在学习了之前一系列理论后,你会发现:
虽然前面的理论除了一些自身问题外,能够解决系统之间的一致性问题,但是,它们的实现比较复杂、成本比较高,最重要的是性能不好。

在现实系统和微服务中中,其底线仅仅是达到最终一致性,而不需要实现专业的、复杂的一致性协议

实现最终一致性往往有一些非常有效、简单的模式,下面就来介绍以下这些模式及其应用场景。

查询模式

任何服务操作都需要提供一个查询接口,用来向外输出操作执行的状态。服务操作的使用方可以通过查询接口获知服务执行状态。并且通过不同状态来作出不同的处理结果。

为了能够实现查询,每个服务操作都需要一个唯一的流水号或者资源ID(比如,请求流水号,订单号)。查询可以分为:单次和批量查询。


在调用超时、系统状态不一致、缓存数据库不一致等情况下,就可以使用查询模式。

补偿模式

有了查询模式,我们可以得知具体操作所处的状态,就可以通过修复使得分布式系统达到一致,这就叫做补偿。

比如同步调用操作,通过查询,我们获知了业务方执行状态:业务完成或者业务在某个子操作失败(或者未知)。此时,如果业务执行方的状态为失败或者未知,那么就会立即告诉调用方失败,也叫做快速失败策略,然后调用业务操作进行逆向回滚或者不被执行操作,从而达到最终一致性。

异步确保模式

异步确保模式是补偿模式的一个典型案例。经常应用到使用方对响应时间要求不太高的场景中
通常,把这类操作从主流程中摘除,通过异步的方式进行处理,处理后把结果通过通知系统通知给使用方
在实践中将要执行的异步操作封装后持久库,然后通过定时(定时校对模式)捞取未完成的任务进行补偿操作来实现异步确保模式,只要定时系统足够健壮,则任何任务最终都会被成功执行。

定期校对模式

系统在没有达到一致之前,系统间的状态是不 致的,甚至是混乱的,需要通过补偿操作来达到最终一致性的目的,但是如何来发现需要补偿的操作呢?

实现定期校对的 个关键就是分布式系统中需要有 个自始至终唯一ID,生成全局唯一ID 有以下两种方法:

  • 持久型:使用数据库表自增字段或者Sequence 生成,为了提高效率,每个应用节点可以缓存一个批次的 ID ,如果机器重启则可能会损失 部分 ID ,但是这并不会产生任何问题。
  • 时间型:一般由机器号、业务号、时间、单节点内自增ID组成,由于时间一般精确到秒或者毫秒,因此不需要持久就能保证在分布式系统中全局唯 、粗略递增等。

可靠消息模式

前面提到的异步确保模式,为了让异步操作的调用方和被调用方接耦合,一般可以使用消息队列(比如Kafka)。
我们需要建立特殊的设施来保障可靠消息的发送,以及处理的幂等性。

  1. 消息的可靠发送
    消息的可靠发送可以认为是尽最大努力发送消息通知,有以下两种实现方法。
    1是在发送消息之前将消息持久到数据库,状态标记为带发送,发送成功后状态才改为发送成功。
    2是将消息发送给第三方的消息管理器,然后消息管理器持久到数据库,与第一种类似。

  2. 消息处理器的幂等性
    如果我们要保障消息成功发送出去,就会有retry,有了重试机制,我们需要对有幂等性的处理。
    保障幂等性的常用方法有:1.使用数据库表的唯一键进行滤重。2.使用分布式表对请求进行滤重。3.使用状态流转的方向性来滤重,通常使用数据库的行级锁来实现。4.业务本身就是幂等的。

TCC模式

一个完整的 TCC 业务由一个主业务服务和若干个从业务服务组成,主业务服务发起并完成整个业务活动,TCC 模式要求从服务提供三个接口:Try、Confirm、Cancel。

  1. Try
    完成所有业务检查
    预留必须业务资源

  2. Confirm
    真正执行业务
    不作任何业务检查
    只使用 Try 阶段预留的业务资源
    Confirm 操作满足幂等性

  3. Cancel:
    释放 Try 阶段预留的业务资源
    Cancel 操作满足幂等性

整个 TCC 业务分成两个阶段完成。

举一个例子比如物品交易,交易流程主要有以下几点:

  1. 买家服务下单扣钱增加积分
  2. 商家服务增加金钱
  3. 订单服务记录订单

(一) Try阶段
事务id1:买家服务 检查账户金额是否充足 如果充足则扣除金额 并增加相应冷冻金额
事务id2:商家服务 增加相同数额的冷冻金
(二)Confirm阶段
买家服务 减去冷冻金额
卖家服务 将冷冻金额加入账户余额
订单服务 将状态改为已支付
(三)Cancel阶段
理论上try阶段事务id2 是不需要有cancel的
因为tcc中如果try成功默认confirm是可以成功的 如果未成功则反复尝试
在Cancel阶段也是如此
所以Cancel阶段只需要回滚事务id1就可以
买家将冷冻金额还回到账户金额

那根据上面的例子是不是可以理解为

try阶段每个服务执行成功 都向活动服务器添加一条活动记录
如果try阶段某一条失败 那么执行cancel阶段
回滚前面所有活动记录
第一条失败直接本地回滚
如果try阶段全部成功 那么反复尝试Confirm直至成功

缓存一致性模式

在大规模、高并发系统中的一个常见的核心需求就是亿级的读需求,显然,关系型数据库并不是解决高并发读需求的最佳方案,互联网经典做法就是使用缓存来抗住读流量。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容