LSTM -- 循环神经网络

1、LSTM 出现解决的问题

在最近的几年,RNN在很多问题上都取得了成功:比如语音识别,语音模型,翻译,图片注释等等,但是RNN存在着梯度消息/爆炸以及对长期信息不敏感的问题,上文中也说到中间维持的隐藏层h即为试图包含整个句子的所有信息的一个状态值,当信息量过大时,普通的RNN效果就不太好了,所以LSTM就被提出来了。现在很多问题的成功都必须归功于LSTM,它拥有更好的记忆能力,在许多的任务中表现都比普通的RNN更好,所以接下来我们来探索一下这个神奇的网络。

2、LSTM 介绍

2-1、结构对比

所有的RNN都有不断重复网络本身的链式形式。在普通的RNN中,这个重复复制的模块只有一个非常简单的结果。例如一个tanh层:


普通的RNN

LSTM也有这样的链式结构,但是这个重复的模块和上面RNN重复的模块结构不同:LSTM并不是只是增加一个简单的神经网络层,而是四个,他们以一种特殊的形式进行交互:
[图片上传失败...(image-3e28ec-1588774477693)]

首先我们先了解一下LSTM图中的符号:


LSTM 计算符号

在LSTM 计算符号图中,每条线表示一个向量,从一个输出节点到其他节点的输入节点。粉红色的圆圈表示逐点式操作,就像向量加法。黄色的盒子是学习好的神经网络层。线条合代表联结,线条分叉则表示内容被复制到不同的地方。

2-2、LSTM背后的核心思想

LSTM的核心之处就是它的cell state(神经元状态),在下图中就是那条贯穿整个结果的水平线。这个cell state就像是一个传送带,他只有很小的线性作用,但却贯穿了整个链式结果。信息很容易就在这个传送带上流动但是状态却不会改变。cell state上的状态相当于长期记忆,而下面的ht则代表短期记忆。

LSTM_Ct

LSTM有能力删除或者增加cell state中的信息,这一个机制是由被称为门限的结构精心设计的。

门限是一种让信息选择性通过的方式,它们是由sigmoid神经网络层和逐点相乘器做成的。

门限

sigmoid层输出0和1之间的数字来描述一个神经元有多少信息应该被通过。输出0表示这些信息全部不能通过,而输出1则表示让所有信息都通过。

一个LSTM有三个这样的门限,去保护和控制神经元的状态。

2-3、三个门限

2-3-1、遗忘门

决定c(t-1)有多少被遗忘。sigmoid函数输出是(0,1)之间一个数(0代表不通过,1代表全通过),与c(t-1)相乘


遗忘门计算过程

2-3-2、输入门

输入门会根据遗忘门的信息, 并增加此时输入x(t)和h(t-1)的信息, 共同更新 c(t). 也就是说, 把前面的适当忘记一部分, 再加上新学的一部分。


输入门计算过程

2-3-3、输出门

输出h(t)由细胞状态c(t), x(t), h(t-1)决定. 把细胞状态c(t)通过 tanh 进行处理(得到一个在 -1 到 1 之间的值),x(t)和h(t-1) 通过sigmoid 门,两者相乘, 得到输出. 简单来说, 就是很久之前学到的, 刚刚学到的, 正在学的综合在一起。


输出门计算过程

3、参考资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354