keras

1. Compile

在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:

  • 优化器optimizer
    该参数可指定为已预定义的优化器名,如rmsprop、adagrad,或一个Optimizer类的对象,详情见optimizers

  • 损失函数loss
    该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数。详情见losses

  • 指标列表metrics
    对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典.请参考性能评估.

# 多分类问题
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 二分类问题
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# 回归问题
model.compile(optimizer='rmsprop',
              loss='mse')

# 自定义metrics
import keras.backend as K

def mean_pred(y_true, y_pred):
    return K.mean(y_pred)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])

2. Fit

# 构建与编译模型
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# 查出数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))

# 训练与数据拟合
model.fit(data, labels, epochs=10, batch_size=32)
def generate_arrays_from_file(path):
    while 1:
        f = open(path)
        for line in f:
            x, y = process_line(line)
            img = load_images(x)
            yield (img, y)
        f.close()

model.fit_generator(generate_arrays_from_file('/my_file.txt'),
        samples_per_epoch=10000, nb_epoch=10)

3. Case

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

# Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)

model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy'])

model.fit(x_train, y_train,
          epochs=20,
          batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD

x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)

model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)

model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

4. functional

Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型等复杂模型的途径。一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,那么你总应该选择函数式模型。函数式模型是最广泛的一类模型,序贯模型(Sequential)只是它的一种特殊情况。因为序贯模型是函数式模型的一个特例,所以我们从一个简单的序贯模型开始,看看函数式模型是如何完成的。

from keras.layers import Input, Dense
from keras.models import Model

inputs = Input(shape=(784,))

x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(data, labels)

使用函数式模型的一个典型场景是搭建多输入、多输出的模型。考虑这样一个模型。

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model

# Headline input: meant to receive sequences of 100 integers, between 1 and 10000.
# Note that we can name any layer by passing it a "name" argument.
main_input = Input(shape=(100,), dtype='int32', name='main_input')


# This embedding layer will encode the input sequence
# into a sequence of dense 512-dimensional vectors.
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)

# A LSTM will transform the vector sequence into a single vector,
# containing information about the entire sequence
lstm_out = LSTM(32)(x)

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])

# We stack a deep densely-connected network on top
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)

# And finally we add the main logistic regression layer
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
              loss_weights=[1., 0.2])

model.fit([headline_data, additional_data], [labels, labels],
          epochs=50, batch_size=32)

model.compile(optimizer='rmsprop',
              loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
              loss_weights={'main_output': 1., 'aux_output': 0.2})

# And trained it via:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
          {'main_output': labels, 'aux_output': labels},
          epochs=50, batch_size=32)

4.1 VGG

from keras.layers import Conv2D, MaxPooling2D, Input

input_img = Input(shape=(3, 256, 256))

tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)

tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)

tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)
tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)

output = keras.layers.concatenate([tower_1, tower_2, tower_3], axis=1)

4.2 ResNet

from keras.layers import Conv2D, Input

# input tensor for a 3-channel 256x256 image
x = Input(shape=(3, 256, 256))
# 3x3 conv with 3 output channels (same as input channels)
y = Conv2D(3, (3, 3), padding='same')(x)
# this returns x + y.
z = keras.layers.add([x, y])

5. Net

5.1 MLP

from keras.datasets imp'''Trains and evaluate a simple MLP
on the Reuters newswire topic classification task.
'''
from __future__ import print_function

import numpy as np
import kerasort reuters
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.preprocessing.text import Tokenizer

max_words = 1000
batch_size = 32
epochs = 5

print('Loading data...')
(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=max_words,
                                                         test_split=0.2)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

num_classes = np.max(y_train) + 1
print(num_classes, 'classes')

print('Vectorizing sequence data...')
tokenizer = Tokenizer(num_words=max_words)
x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

print('Convert class vector to binary class matrix '
      '(for use with categorical_crossentropy)')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)

print('Building model...')
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_split=0.1)
score = model.evaluate(x_test, y_test,
                       batch_size=batch_size, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1]

5.2 vgg16

# -*- coding: utf-8 -*-
'''VGG16 model for Keras.
# Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
'''
from __future__ import print_function

import numpy as np
import warnings

from keras.models import Model
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import GlobalAveragePooling2D
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs


WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'


def VGG16(include_top=True, weights='imagenet',
          input_tensor=None, input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG16 architecture.
    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.
    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.
    # Arguments
        include_top: whether to include the 3 fully-connected
            layers at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 244)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 48.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                                    WEIGHTS_PATH,
                                    cache_subdir='models')
        else:
            weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                    WEIGHTS_PATH_NO_TOP,
                                    cache_subdir='models')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model


if __name__ == '__main__':
    model = VGG16(include_top=True, weights='imagenet')

    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)

    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

5.3 inception v3

# -*- coding: utf-8 -*-
"""Inception V3 model for Keras.
Note that the input image format for this model is different than for
the VGG16 and ResNet models (299x299 instead of 224x224),
and that the input preprocessing function is also different (same as Xception).
# Reference
- [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567)
"""
from __future__ import print_function
from __future__ import absolute_import

import warnings
import numpy as np

from keras.models import Model
from keras import layers
from keras.layers import Activation
from keras.layers import Dense
from keras.layers import Input
from keras.layers import BatchNormalization
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import AveragePooling2D
from keras.layers import GlobalAveragePooling2D
from keras.layers import GlobalMaxPooling2D
from keras.engine.topology import get_source_inputs
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.utils.data_utils import get_file
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.preprocessing import image


WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5'
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'


def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    """Utility function to apply conv + BN.
    Arguments:
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.
    Returns:
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if K.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x


def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
    """Instantiates the Inception v3 architecture.
    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.
    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.
    Note that the default input image size for this model is 299x299.
    Arguments:
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    Returns:
        A Keras model instance.
    Raises:
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=139,
        data_format=K.image_data_format(),
        include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0, 1, 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed0')

    # mixed 1: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed1')

    # mixed 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed2')

    # mixed 3: 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

    # mixed 4: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed4')

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

    # mixed 7: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed7')

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))
    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='inception_v3')

    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_path = get_file(
                'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='9a0d58056eeedaa3f26cb7ebd46da564')
        else:
            weights_path = get_file(
                'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='bcbd6486424b2319ff4ef7d526e38f63')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            convert_all_kernels_in_model(model)
    return model


def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x


if __name__ == '__main__':
    model = InceptionV3(include_top=True, weights='imagenet')

    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)

    x = preprocess_input(x)

    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

5.4 ResNet-50

# -*- coding: utf-8 -*-
'''ResNet50 model for Keras.
# Reference:
- [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
Adapted from code contributed by BigMoyan.
'''
from __future__ import print_function

import numpy as np
import warnings

from keras.layers import Input
from keras import layers
from keras.layers import Dense
from keras.layers import Activation
from keras.layers import Flatten
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import ZeroPadding2D
from keras.layers import AveragePooling2D
from keras.layers import GlobalAveragePooling2D
from keras.layers import BatchNormalization
from keras.models import Model
from keras.preprocessing import image
import keras.backend as K
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs


WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'


def identity_block(input_tensor, kernel_size, filters, stage, block):
    """The identity block is the block that has no conv layer at shortcut.
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the filterss of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    # Returns
        Output tensor for the block.
    """
    filters1, filters2, filters3 = filters
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters2, kernel_size,
               padding='same', name=conv_name_base + '2b')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

    x = layers.add([x, input_tensor])
    x = Activation('relu')(x)
    return x


def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
    """conv_block is the block that has a conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the filterss of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    # Returns
        Output tensor for the block.
    Note that from stage 3, the first conv layer at main path is with strides=(2,2)
    And the shortcut should have strides=(2,2) as well
    """
    filters1, filters2, filters3 = filters
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(filters1, (1, 1), strides=strides,
               name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters2, kernel_size, padding='same',
               name=conv_name_base + '2b')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)

    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

    shortcut = Conv2D(filters3, (1, 1), strides=strides,
                      name=conv_name_base + '1')(input_tensor)
    shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)

    x = layers.add([x, shortcut])
    x = Activation('relu')(x)
    return x


def ResNet50(include_top=True, weights='imagenet',
             input_tensor=None, input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.
    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.
    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 244)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                                    WEIGHTS_PATH,
                                    cache_subdir='models',
                                    md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                    WEIGHTS_PATH_NO_TOP,
                                    cache_subdir='models',
                                    md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model


if __name__ == '__main__':
    model = ResNet50(include_top=True, weights='imagenet')

    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)

    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

5.5 LSTM

'''Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
'''

from __future__ import print_function
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM
from keras.optimizers import RMSprop
from keras.utils.data_utils import get_file
import numpy as np
import random
import sys

path = get_file('nietzsche.txt', origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')
text = open(path).read().lower()
print('corpus length:', len(text))

chars = sorted(list(set(text)))
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))

# cut the text in semi-redundant sequences of maxlen characters
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
    sentences.append(text[i: i + maxlen])
    next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))

print('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
    for t, char in enumerate(sentence):
        X[i, t, char_indices[char]] = 1
    y[i, char_indices[next_chars[i]]] = 1


# build the model: a single LSTM
print('Build model...')
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(chars))))
model.add(Dense(len(chars)))
model.add(Activation('softmax'))

optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)


def sample(preds, temperature=1.0):
    # helper function to sample an index from a probability array
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)

# train the model, output generated text after each iteration
for iteration in range(1, 60):
    print()
    print('-' * 50)
    print('Iteration', iteration)
    model.fit(X, y,
              batch_size=128,
              epochs=1)

    start_index = random.randint(0, len(text) - maxlen - 1)

    for diversity in [0.2, 0.5, 1.0, 1.2]:
        print()
        print('----- diversity:', diversity)

        generated = ''
        sentence = text[start_index: start_index + maxlen]
        generated += sentence
        print('----- Generating with seed: "' + sentence + '"')
        sys.stdout.write(generated)

        for i in range(400):
            x = np.zeros((1, maxlen, len(chars)))
            for t, char in enumerate(sentence):
                x[0, t, char_indices[char]] = 1.

            preds = model.predict(x, verbose=0)[0]
            next_index = sample(preds, diversity)
            next_char = indices_char[next_index]

            generated += next_char
            sentence = sentence[1:] + next_char

            sys.stdout.write(next_char)
            sys.stdout.flush()
        print()

5.6 GAN

'''
DCGAN on MNIST using Keras
Dependencies: tensorflow 1.0 and keras 2.0
Usage: python dcgan_mnist.py
'''

import numpy as np
import time
from tensorflow.examples.tutorials.mnist import input_data

from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, Reshape
from keras.layers import Conv2D, Conv2DTranspose, UpSampling2D
from keras.layers import LeakyReLU, Dropout
from keras.layers import BatchNormalization
from keras.optimizers import Adam, RMSprop

import matplotlib.pyplot as plt

class ElapsedTimer(object):
    def __init__(self):
        self.start_time = time.time()
    def elapsed(self,sec):
        if sec < 60:
            return str(sec) + " sec"
        elif sec < (60 * 60):
            return str(sec / 60) + " min"
        else:
            return str(sec / (60 * 60)) + " hr"
    def elapsed_time(self):
        print("Elapsed: %s " % self.elapsed(time.time() - self.start_time) )

class DCGAN(object):
    def __init__(self, img_rows=28, img_cols=28, channel=1):

        self.img_rows = img_rows
        self.img_cols = img_cols
        self.channel = channel
        self.D = None   # discriminator
        self.G = None   # generator
        self.AM = None  # adversarial model
        self.DM = None  # discriminator model

    # (W−F+2P)/S+1
    def discriminator(self):
        if self.D:
            return self.D
        self.D = Sequential()
        depth = 64
        dropout = 0.4
        # In: 28 x 28 x 1, depth = 1
        # Out: 14 x 14 x 1, depth=64
        input_shape = (self.img_rows, self.img_cols, self.channel)
        self.D.add(Conv2D(depth*1, 5, strides=2, input_shape=input_shape,\
            padding='same'))
        self.D.add(LeakyReLU(alpha=0.2))
        self.D.add(Dropout(dropout))

        self.D.add(Conv2D(depth*2, 5, strides=2, padding='same'))
        self.D.add(LeakyReLU(alpha=0.2))
        self.D.add(Dropout(dropout))

        self.D.add(Conv2D(depth*4, 5, strides=2, padding='same'))
        self.D.add(LeakyReLU(alpha=0.2))
        self.D.add(Dropout(dropout))

        self.D.add(Conv2D(depth*8, 5, strides=1, padding='same'))
        self.D.add(LeakyReLU(alpha=0.2))
        self.D.add(Dropout(dropout))

        # Out: 1-dim probability
        self.D.add(Flatten())
        self.D.add(Dense(1))
        self.D.add(Activation('sigmoid'))
        self.D.summary()
        return self.D

    def generator(self):
        if self.G:
            return self.G
        self.G = Sequential()
        dropout = 0.4
        depth = 64+64+64+64
        dim = 7
        # In: 100
        # Out: dim x dim x depth
        self.G.add(Dense(dim*dim*depth, input_dim=100))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))
        self.G.add(Reshape((dim, dim, depth)))
        self.G.add(Dropout(dropout))

        # In: dim x dim x depth
        # Out: 2*dim x 2*dim x depth/2
        self.G.add(UpSampling2D())
        self.G.add(Conv2DTranspose(int(depth/2), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        self.G.add(UpSampling2D())
        self.G.add(Conv2DTranspose(int(depth/4), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        self.G.add(Conv2DTranspose(int(depth/8), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        # Out: 28 x 28 x 1 grayscale image [0.0,1.0] per pix
        self.G.add(Conv2DTranspose(1, 5, padding='same'))
        self.G.add(Activation('sigmoid'))
        self.G.summary()
        return self.G

    def discriminator_model(self):
        if self.DM:
            return self.DM
        optimizer = RMSprop(lr=0.0002, decay=6e-8)
        self.DM = Sequential()
        self.DM.add(self.discriminator())
        self.DM.compile(loss='binary_crossentropy', optimizer=optimizer,\
            metrics=['accuracy'])
        return self.DM

    def adversarial_model(self):
        if self.AM:
            return self.AM
        optimizer = RMSprop(lr=0.0001, decay=3e-8)
        self.AM = Sequential()
        self.AM.add(self.generator())
        self.AM.add(self.discriminator())
        self.AM.compile(loss='binary_crossentropy', optimizer=optimizer,\
            metrics=['accuracy'])
        return self.AM

class MNIST_DCGAN(object):
    def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channel = 1

        self.x_train = input_data.read_data_sets("mnist",\
            one_hot=True).train.images
        self.x_train = self.x_train.reshape(-1, self.img_rows,\
            self.img_cols, 1).astype(np.float32)

        self.DCGAN = DCGAN()
        self.discriminator =  self.DCGAN.discriminator_model()
        self.adversarial = self.DCGAN.adversarial_model()
        self.generator = self.DCGAN.generator()

    def train(self, train_steps=2000, batch_size=256, save_interval=0):
        noise_input = None
        if save_interval>0:
            noise_input = np.random.uniform(-1.0, 1.0, size=[16, 100])
        for i in range(train_steps):
            images_train = self.x_train[np.random.randint(0,
                self.x_train.shape[0], size=batch_size), :, :, :]
            noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 100])
            images_fake = self.generator.predict(noise)
            x = np.concatenate((images_train, images_fake))
            y = np.ones([2*batch_size, 1])
            y[batch_size:, :] = 0
            d_loss = self.discriminator.train_on_batch(x, y)

            y = np.ones([batch_size, 1])
            noise = np.random.uniform(-1.0, 1.0, size=[batch_size, 100])
            a_loss = self.adversarial.train_on_batch(noise, y)
            log_mesg = "%d: [D loss: %f, acc: %f]" % (i, d_loss[0], d_loss[1])
            log_mesg = "%s  [A loss: %f, acc: %f]" % (log_mesg, a_loss[0], a_loss[1])
            print(log_mesg)
            if save_interval>0:
                if (i+1)%save_interval==0:
                    self.plot_images(save2file=True, samples=noise_input.shape[0],\
                        noise=noise_input, step=(i+1))

    def plot_images(self, save2file=False, fake=True, samples=16, noise=None, step=0):
        filename = 'mnist.png'
        if fake:
            if noise is None:
                noise = np.random.uniform(-1.0, 1.0, size=[samples, 100])
            else:
                filename = "mnist_%d.png" % step
            images = self.generator.predict(noise)
        else:
            i = np.random.randint(0, self.x_train.shape[0], samples)
            images = self.x_train[i, :, :, :]

        plt.figure(figsize=(10,10))
        for i in range(images.shape[0]):
            plt.subplot(4, 4, i+1)
            image = images[i, :, :, :]
            image = np.reshape(image, [self.img_rows, self.img_cols])
            plt.imshow(image, cmap='gray')
            plt.axis('off')
        plt.tight_layout()
        if save2file:
            plt.savefig(filename)
            plt.close('all')
        else:
            plt.show()

if __name__ == '__main__':
    mnist_dcgan = MNIST_DCGAN()
    timer = ElapsedTimer()
    mnist_dcgan.train(train_steps=10000, batch_size=256, save_interval=500)
    timer.elapsed_time()
    mnist_dcgan.plot_images(fake=True)
    mnist_dcgan.plot_images(fake=False, save2file=True)

Note: https://keras-cn.readthedocs.io/en/latest/other/callbacks/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 函数式(Functional)模型 Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型...
    gaoshine阅读 4,190评论 0 3
  • Keras 源码分析 此文档中,凡代码里用pass,均系省略源码以便阅读,起“本枝百世”之用。此注明者,乃pass...
    yangminz阅读 31,773评论 5 34
  • 原文地址介绍完了优化器和目标函数,那么剩下的就是训练模型了。这一小节,我们来看一下Keras的Models是如何使...
    readilen阅读 1,474评论 0 1
  • 夏日傍晚,一顿简餐后,抱着三本书走出宿舍楼,向图书馆的方向去。天空灰浊浊的,周遭漫着湿气,上午的雨,来得急,去得也...
    李泽贤阅读 615评论 8 10
  • 记得刚参加工作的时候“隧道视野”特别严重。 往往是领导问我一个问题,我转身去问相关人员或者合作单位,再转身传达给领...
    花朵小恬阅读 218评论 1 6