爬取中国票房网数据并进行可视化

image.png

    这里主要是对年度票房信息进行操作,url构造、数据解析方面都是比较简单的了,这里就只是简单说一下

爬虫

1. 请求网站

request请求网站,返回源码信息

def get_Html(url):
    r = requests.get(url, headers=headers)
    r.encoding = r.apparent_encoding
    return r.text

2. 获取电影数据保存至字典

    因为数据不多,我们就对页面可视的所有数据进行抓取,这里用到了lxml里面的etree解析网页,用xpath获取对应的数据项然后保存,代码比较简单,过程数据项英文翻译过来就懂了,就不做太多注释了

def get_Info(text):
    info = {}
    info['movie_name'] = []
    info['movie_type'] = []
    info['movie_type'] = []
    info['total'] = []
    info['price_average'] = []
    info['session_average'] = []
    info['origin'] = []
    info['time'] = []
    tree = etree.HTML(text)
    movies = tree.xpath('//table[@id="tbContent"]//tr')[1:]
    for movie in movies:
        movie_name = movie.xpath('./td[1]/a/p/text()')[0]
        if movie.xpath('./td[2]/text()'):
            movie_type = movie.xpath('./td[2]/text()')[0]
        total = movie.xpath('./td[3]/text()')[0]
        price_average = movie.xpath('./td[4]/text()')[0]
        session_average = movie.xpath('./td[5]/text()')[0]
        if movie.xpath('./td[6]/text()'):
            origin = movie.xpath('./td[6]/text()')[0]
        if movie.xpath('./td[7]/text()'):
            time = movie.xpath('./td[7]/text()')[0]
        else:
            time = ""
        # print(movie_name+' movie_type:'+movie_type+' total:'+total+' person_average:'+price_average+' session_average:'+session_average+' origin:'+origin+' time:'+time)
        info['movie_name'].append(movie_name)
        info['movie_type'].append(movie_type)
        info['total'].append(total)
        info['price_average'].append(price_average)
        info['session_average'].append(session_average)
        info['origin'].append(origin)
        info['time'].append(time)
    return info

3. url构造,获取2008-2019所有榜上的电影信息

urls = ["http://www.cbooo.cn/year?year={}".format(year) for year in range(2008, 2020)]

4. 保存至csv

    用到pandas库,先将字典转成DataFrame,然后直接写入csv即可,可参考我之前的可视化相关的内容.(这里为了显示中文可以在编码方面稍做处理)

def write2csv(dict, year):
    if year == '2008':
        df = pd.DataFrame(data=dict, index=None)
        df.to_csv('box_office.csv', index=False, encoding='gbk', mode='a')
    else:
        df = pd.DataFrame(data=dict, index=None)
        df.to_csv('box_office.csv', index=False, header=False, encoding='gbk', mode='a')

5. csv文件

image.png

可视化

1. 各类型电影总票房数(柱状图)

def draw_bar(filename):
    data = pd.read_csv(filename, encoding='gbk')
    total = data.groupby(data['movie_type'])['total'].sum()
    total.plot(kind='bar')
    plt.legend()

    # 添加网格
    plt.grid(linestyle='--', alpha=0.5)

    plt.xlabel("电影类别")
    plt.ylabel("总票房数量")
    plt.title("各类型电影总票房数")

    plt.show()
image.png

3. 总票房和平均票价的关系(散点图)

def draw_scatter(filename):
    data = pd.read_csv(filename, encoding='gbk')
    plt.title('总票房和平均票价的关系')
    plt.xlabel('平均票价')
    plt.ylabel('总票房(万)')
    plt.scatter(data.price_average, data.total, color='b', linestyle='--', label='上海')
    plt.show()

image.png

3. 剧情类型电影前五票房曲线(折线图)

def draw_plot(filename):
    data = pd.read_csv(filename, encoding='gbk')
    total = data.query('movie_type == "剧情"').head(5).groupby('movie_name')['total'].sum()

    total.plot()
    plt.legend()

    # 添加网格
    plt.grid(linestyle='--', alpha=0.5)

    plt.xlabel("电影")
    plt.ylabel("总票房数量")
    plt.title("剧情类型电影前五票房曲线")

    plt.show()
image.png

4. 电影票房前五的类型分布(饼图)

def draw_pie(filename):
    data = pd.read_csv(filename, encoding='gbk')
    total = data.groupby(data['movie_type'], ).size().sort_values(ascending=False).head(5)
    print(total)
    print(total.index)
    plt.title("电影票房前五的类型分布")
    plt.pie(total, autopct='%.2f%%', labels=total.index)
    plt.axis('equal')
    plt.legend()
    plt.show()
image.png

5. 中文处理

plt.rcParams['font.sans-serif'] = ['Simhei']
  • 更多爬虫代码详情查看Github
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容