第2章 Python 数字图像处理(DIP) --数字图像基础2 - 图像感知要素 - 图像取样和量化 - 空间分辨率和灰度分辨率

转载请注明出处

图像感知与获取

一个简单的成像模型

我们用形如 f(x,y) 的二维函数来表示图像。在空间坐标 (x, y)处 f的值是一个标量,其物理意义由图像源决定,其值与物理源(如电磁波)辐射的能量成正比。因此,f(x,y) 一定是非负的和有限的,即
0 \leq f(x, y) < \infty \tag{2.3}
函数f(x, y) 由两个分量表征:(1)入射到被观察场景的淘汰照射量;(2)被场景中物体反射的照射量。它们分别称为入射分量反射分量,并分别用i(x, y) 和 r(x, y) 表示。这两个函数的乘积形成f(x, y) ,即
f(x, y) = i(x, y) r(x, y) \tag{2.4}
0 \leq i(x, y) < \infty \tag{2.5}
0 \leq r(x, y) \leq 1 \tag{2.6}

于是,反射分量限制在0(全吸收)和1(全反射)之间。i(x, y)的性质取决于照射源,而 r(x, y) 的性质取决被成像物体的特性。

区间[L_{min}, L_{max}]称为亮度级(或灰度级)

图像取样和量化

def get_circle(height, width):
    """
    creat a circle faded image
    :param height: input height of the image you want to create
    :param width: input height of the image you want to create
    :return: image normalize [0, 1]
    """
    
    M, N = width, height
    u = np.arange(M)
    v = np.arange(N)
    u, v = np.meshgrid(u, v)
    D = np.sqrt((u - (M//2 + 1))**2 + (v - (N//2 + 1))**2)
    kernel = normalize(D)
    
    return kernel
# 图像取样
height, width = 512, 512
mid_h, mid_w = height//2 + 1, width//2 + 1

img_ori = np.zeros([height, width], dtype=np.float)
img_ori = (img_ori + 1.0) * 1.
circle = 1 - get_circle(400, 400)

img_ori[mid_h-200: mid_h+200, mid_w-200:mid_w+200] = circle

f_x_57 = img_ori[57:58, :] # 取样 f(x, 56)

plt.figure(figsize=(10, 5))
plt.subplot(121), plt.imshow(img_ori, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.plot(f_x_57[0]), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
image

空间分辨率和灰度分辨率

空间分辨率是图像中最小可辨别的希腊别人测度。这一测度通常使用点数/英寸(dpi)表示。

灰度分辨率是批在灰度级中可分辨的最小变化。灰度级通常是2的整数次幂。最常用的数是8比特,在一些特定的范围也使用16比特。32比特的灰度量化很少见,有时也会使用10比特和12比特来做数字化图像灰度级的系统。我们常说一幅灰度被量化为256组的图像,其灰度分辨率为8比特。灰度的可分辨变化 不仅受噪声和饱和度的影响,而且受人类分析和解释整个场景内容的感知能力的影响。

def down_sample(image):
    height, width = image.shape[:2]
    dst = np.zeros([height//2, width//2])
    dst = image[::2, ::2]
    return dst
# 用降采样来模拟降低空间分辨率的效果
img = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0220(a)(chronometer 3692x2812  2pt25 inch 1250 dpi).tif', 0)

img_2 = down_sample(img)
img_3 = down_sample(img_2)
img_4 = down_sample(img_3)

plt.figure(figsize=(15, 18))
plt.subplot(221), plt.imshow(img, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(img_2, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_3, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_4, 'gray'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
image
# 改变灰度值以实现灰度级的不同
# img = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH02/Fig0222(a)(face).tif', 0)
img = get_circle(1000, 1000)

img_temp = normalize(img)

fig = plt.figure(figsize=(13, 26))
for i in range(8):
    ax = fig.add_subplot(4, 2, i+1)
    if i < 7:
        dst = np.uint(img_temp * (2**(8 - i) - 1))
    else:
        dst = np.uint(img_temp * (2))
    ax.imshow(dst, 'gray')
    ax.set_title(f'{2**(8 - i)}')
    ax.set_xticks([])
    ax.set_yticks([])
plt.tight_layout()
plt.show()
image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容