动态(组合)地给一个对象增加一些额外的指责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码、减少子类个数)。
——《设计模式》GoF
动机
在某些情况下,我们可能会“过度的使用继承来扩展对象的功能”,由于继承为类型引入静态特质,使得这种扩展方式缺乏灵活性;并且随着子类的增多(扩展功能的在增多),各种子类的组合(扩展功能的组合)会导致子类的膨胀。
在下面有一组伪代码,这组伪代码主要我i饿了描述一些流的操作,比如文件流、网络流、内存流等,如果我们对于流提出更多的要求,比如需要对文件流加密、对网络流加密以及内存流的加密,同时如果考虑缓冲的情况下,那么这些流都可能会要缓冲,也可能继续的组合,产生加密缓冲网络流等等的操作。
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};
class CryptoNetworkStream : :public NetworkStream{
public:
virtual char Read(int number){
//额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
};
class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){
//额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};
class BufferedFileStream : public FileStream{
//...
};
class BufferedNetworkStream : public NetworkStream{
//...
};
class BufferedMemoryStream : public MemoryStream{
//...
}
class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
};
void Process(){
//编译时装配
CryptoFileStream *fs1 = new CryptoFileStream();
BufferedFileStream *fs2 = new BufferedFileStream();
CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream();
}
这样的设计对于代码的复用来说很不好,对于每种方式都有大量的重复代码,但这还不是最主要的,而更可怕的是,这样的设计会导致class的数量激增。将精力浪费在了激增的重复代码上,实在是得不偿失的一件事。所以必须要考虑如何来解决。
那么应该要如何下手呢?如果我们把那些因为组合而产生的class(比如CryptoFileStream)的继承关系先打断,而是改为使用内部持有原先父类的指针。(比如CryptoFileStream原先继承了FileStream,改为持有FileStream*)。这时候,原class中的调用父类的函数,全都可以改为使用自己持有的指针对象来调用。此时代码的重复性大幅度提高,只是每一个组合型的class中持有的那个指针不属于同一个(比如,持有的为FileStream,NetworkStream以及BufferStream的指针),如果观察一下,也不难发现,其实FileStream,NetworkStream以及BufferStream又都有同一个父类Stream,所以利用多态性,就可以将每个组合类型中的持有的指针变量,声明为他们共同的父类,利用多态性只需要让父类的指向子类即可(Stream *stream = new FileStream();
),这就实现了,编译时都为一样的,在运行时提供不同的对象。此时会发现具有大量重复的类,合并了同类项,减少很多不必要的组合类。
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
class CryptoStream: public Stream {
Stream* stream;//...
public:
CryptoStream(Stream* stm):stream(stm){
}
virtual char Read(int number){
//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};
class BufferedStream : public Stream{
Stream* stream;//...
public:
BufferedStream(Stream* stm):stream(stm){
}
//...
};
void Process(){
//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);
BufferedStream* s3=new BufferedStream(s1);
BufferedStream* s4=new BufferedStream(s2);
}
观察上面的代码来说,其实有很多class里面都持有同样的变量stream,那么这些类可以向上再抽象一个父类,将strem 在父类中声明。
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
DecoratorStream: public Stream{
protected:
Stream* stream;//...
DecoratorStream(Stream * stm):stream(stm){
}
};
class CryptoStream: public DecoratorStream {
public:
CryptoStream(Stream* stm):DecoratorStream(stm){
}
virtual char Read(int number){
//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};
class BufferedStream : public DecoratorStream{
Stream* stream;//...
public:
BufferedStream(Stream* stm):DecoratorStream(stm){
}
//...
};
void Process(){
//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);
BufferedStream* s3=new BufferedStream(s1);
BufferedStream* s4=new BufferedStream(s2);
}
FileStream、NetworkStream还有BufferStream来说,他们可以独立执行任务,而加密和缓存其实就是对他们的增强。只需要对Stream(这三个类的共同父类)增加加密功能、增加缓冲的功能,而在使用的时候自由组合即可,而不需要把代码全都写出来。
要点总结
- 通过采用组合而非继承的手法,Decorator模式实现了在运动时动态扩展对象功能的能力,而且可以根据需要扩展多个功能。避免了使用集成带来的“灵活性差”和“多子类衍生的问题”
- Decorator类在接口上变现为is-a Component的继承关系,即Decorator类集成了Component类所具有的接口。但在实现上又表现为has-a Component的组合关系,即Decorator类又使用了另外一个Component类。
- Decorator模式的目的并非解决“多子类衍生的多继承”问题,Decorator模式应用的重要点在于解决“主体类在多个方向上的扩展功能”——是为“装饰”的含义。