由浅入深快速排序算法(JS实现)

前言

前段时间,前端圈子因为一篇文章面试官:阮一峰版的快速排序完全是错的
,而浮躁了起来,而本文作者也因为不当的表述而遭受很多人的批评与嘲笑。同时,我们也发现了很多前端同学阅读文章的时候,没有进行完整的思考,就过于相信文章所说的观点过于的肯定与信赖(这种事情我也没有少犯)。今天,我们就一步一步的深入快速排序算法的实现,看看阮一峰老师是否真像文中所说的是完全错误的呢。

快速排序的算法

快速排序使用分治法策略来把一个序列)分为两个子序列
步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任何一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序算法的实现

从上面的算法说明我们可以知道,快速排序本质是通过分治策略通过基准值数组拆分成两部分,一部分永远比基准值小,另外一部分永远比基准值大。这时候在继续在拆分的部分中取基准值继续将已经拆分的部分再次拆分成两部分,直到不可在继续拆分下去。这个时候数组的顺序就已经完成了排序操作。

我们根据上面描述,就可以完成下面这样的代码实现(类阮一峰老师代码实现)

var quickSort = function(arr){
    // 如果数组不可在分,则跳出递归
    if(arr.length <= 1){
        return arr;
    }
    // 基准值取数组第一个
    var pivot = arr[0];
    var left = [];
    var right = [];
    for(var i = 1; i < arr.length; i++){
        // 小于等于基准值的放在左边,大于基准值的放在右边
        if(arr[i] <= pivot){
            left.push(arr[i]);
        } else {
            right.push(arr[i]);
        }
    }
   // 对左右数组递归quickSort,最后合并成一个完整的数组
    return quickSort(left).concat(pivot).concat(quickSort(right));
}

在这段代码中,我们可以看到,这段代码实现了通过pivot区分左右部分,然后递归的在左右部分继续取pivot排序,实现了快速排序的文本描述,也就是说该阮老师的算法实现本质是没有问题的。

虽然阮老师的实现方式非常的易于理解。不过该实现也是有可以改进的空间,在这种实现中,我们发现在函数内定义了left/right两个数组存放临时数据。随着递归的次数增多,会定义并存放越来越多的临时数据,需要Ω(n)的额外储存空间。

因此,像很多算法书中,都使用了原地(in-place)分区的版本去实现快速排序,我们先介绍什么是原地分区算法。
原地(in-place)分区法正如其名,即借由移动小于等于pivot的所有元素到子序列的开头,留下所有大于或等于的元素接在他们后面。在这个过程它也为基准元素找寻最后摆放的位置,也就是它回传的值。它暂时地把基准元素移到子序列的结尾,而不会被前述方式影响到。由于算法只使用交换,因此最后的数列与原先的数列拥有一样的元素,也不会产生临时数组,从而增加空间复杂度。

原地(in-place)分区算法描述

  1. 从数列中挑出一个元素,称为"基准"(pivot),数组第一个元素的位置作为索引。
  2. 遍历数组,当数组数字小于或者等于基准值,则将索引位置上的数与该数字进行交换,同时索引+1
  3. 将基准值与当前索引位置进行交换

通过以上3个步骤,就将以基准值为中心,数组的左右两侧数字分别比基准值小或者大了。这个时候在递归的原地分区,就可以得到已排序后的数组。

原地分区算法实现

// 交换数组元素位置
function swap(array, i, j) {
    var temp = array[i];
    array[i] = array[j];
    array[j] = temp;
}

function partition(array, left, right) {
    var index = left;
    var pivot = array[right]; // 取最后一个数字当做基准值,这样方便遍历
    for (var i = left; i < right; i++) {
        if (array[i] <= pivot) {
            swap(array, index, i);
            index++;
        }
    }
    swap(array, right, index);
    return index;
}

因为我们需要递归的多次原地分区,同时,又不想额外的地址空间所以,在实现分区算法的时候会有3个参数,分别是原数组array,需要遍历的数组起点left以及需要遍历的数组终点right
最后返回一个已经排好序的index值用于下次递归,该索引对应的值一定比索引左侧的数组元素小,比所有右侧的数组元素大。

再次基础上我们还是可以进一步的优化分区算法,我们发现

  1. <=pivot可以改为<pivot,这样可以减少一次交换

原地分区版快速排序实现

function quickSort(array) {
    function swap(array, i, j) {
        var temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

    function partition(array, left, right) {
        var index = left;
        var pivot = array[right]; // 取最后一个数字当做基准值,这样方便遍历
        for (var i = left; i < right; i++) {
            if (array[i] < pivot) {
                swap(array, index, i);
                index++;
            }
        }
        swap(array, right, index);
        return index;
    }

    function sort(array, left, right) {
        if (left > right) {
            return;
        }
        var storeIndex = partition(array, left, right);
        sort(array, left, storeIndex - 1);
        sort(array, storeIndex + 1, right);
    }

    sort(array, 0, array.length - 1);
    return array;
}

该原地分区算法实际运行动图如下:


quickSort.gif

除此之外,原地分区算法还有各种各样其他的实现,开头提到的文章中则使用了双向扫描的原地分区算法,这里都不在赘述了。

参考文章

维基百科:快速排序

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容