os-walk|reset_index|slice

Python中os.walk()的使用方法 - 晓伟的文章 - 知乎
https://zhuanlan.zhihu.com/p/149824829
如何重置index?

data.reset_index(drop=True,inplace = True)  ## 先把之前的index去掉~
time_list = pd.date_range(start = "2019/12/10 17:30",end = "2019/12/24 21:59:59.8",freq = "0.2S")
data.index.name = "time_"
data = data.set_index(time_list)

如果index是日期加时间,列是通量,那么如何获得每个小时的平均值?

data["hour"] = pd.to_datetime(data.index).hour
transform = lambda x:x.to_pydatetime().replace(hour=0)
data = data.set_index([data.index,data['hour']]) 

cal_q=lambda x:x.describe(percentiles=[0.05,0.25,.5,.75, .95])
data.loc[:,"Flux"].unstack().apply(cal_q).to_csv("Flux.csv")

如果想对长数据进行切片并输出?

import numpy as np
import pandas as pd
import matplotlib as mpl
import os
import math
import glob
import datetime
import matplotlib.dates as mdates
from matplotlib import pyplot as plt
from datetime import timedelta

def control_data_level(data,n):

    time_list = pd.date_range(start='2019-12-24 22:00',end='2020-1-1 6:30',freq='30T')
    
    for ith, star_t in enumerate(time_list[:]):
            end_t = star_t + timedelta(minutes=30)-timedelta(seconds=0.2)
            print(star_t, end_t)
                
            sub_df = data.loc[star_t:end_t]  
            sub_df.to_csv(r"D:\python\inter-1-"+datetime.datetime.strftime(star_t,'%Y-%m-%d_%H%M')+'.csv')
            
            fig,axs = plt.subplots(nrows=6,ncols=1,figsize=(30,20))
            mpl.rcParams['font.size'] = 15
            mpl.rcParams['font.weight'] = 'bold'
            mpl.rcParams['font.sans-serif']=['Arial']
            
            axs[0].plot(sub_df.index,sub_df["SCsize_tmp"],"k-o",lw=1,markerfacecolor='w')
            axs[1].plot(sub_df.index,sub_df["SizeBC_tmp"],"b-o",lw=1,markerfacecolor='w')
            axs[2].plot(sub_df.index,sub_df["massBC"],"r-o",lw=1,markerfacecolor='w')
            axs[3].plot(sub_df.index,sub_df["Ux_12m"],"k-o",lw=1,markerfacecolor='w')
            axs[4].plot(sub_df.index,sub_df["Uy_12m"],"b-o",lw=1,markerfacecolor='w')
            axs[5].plot(sub_df.index,sub_df["Uz_12m"],"r-o",lw=1,markerfacecolor='w')
            
            
            axs[0].axhline(sub_df["SCsize_tmp"].mean()+3.5*sub_df["SCsize_tmp"].std(),c="r",ls="--",lw=1.5)
            axs[0].axhline(sub_df["SCsize_tmp"].mean()-3.5*sub_df["SCsize_tmp"].std(),c="r",ls="--",lw=1.5)
            axs[1].axhline(sub_df["SizeBC_tmp"].mean()+3.5*sub_df["SizeBC_tmp"].std(),c="r",ls="--",lw=1.5)
            axs[1].axhline(sub_df["SizeBC_tmp"].mean()-3.5*sub_df["SizeBC_tmp"].std(),c="r",ls="--",lw=1.5)
            axs[2].axhline(sub_df["massBC"].mean()+3.5*sub_df["massBC"].std(),c="r",ls="--",lw=1.5)
            axs[2].axhline(sub_df["massBC"].mean()-3.5*sub_df["massBC"].std(),c="r",ls="--",lw=1.5)
            axs[3].axhline(sub_df["Ux_12m"].mean()+3.5*sub_df["Ux_12m"].std(),c="r",ls="--",lw=1.5)
            axs[3].axhline(sub_df["Ux_12m"].mean()-3.5*sub_df["Ux_12m"].std(),c="r",ls="--",lw=1.5)
            axs[4].axhline(sub_df["Uy_12m"].mean()+3.5*sub_df["Uy_12m"].std(),c="r",ls="--",lw=1.5)
            axs[4].axhline(sub_df["Uy_12m"].mean()-3.5*sub_df["Uy_12m"].std(),c="r",ls="--",lw=1.5)
            axs[5].axhline(sub_df["Uz_12m"].mean()+5*sub_df["Uz_12m"].std(),c="r",ls="--",lw=1.5)
            axs[5].axhline(sub_df["Uz_12m"].mean()-5*sub_df["Uz_12m"].std(),c="r",ls="--",lw=1.5)
            
            
            
            axs[5].set_xlabel("time")

            axs[0].set_ylabel("SC num conc.(#/(cm$^3$))")
            axs[1].set_ylabel("BC num conc.(#/(cm$^3$))")
            axs[2].set_ylabel("BC mass conc.(ng/m$^3$)")
            axs[3].set_ylabel("u(m/s)")
            axs[4].set_ylabel("v(m/s)")
            axs[5].set_ylabel("w(m/s)")           
            
            for ax in axs:
                    ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d %H:%M"))
                    ax.set_xlim(sub_df.index[0],sub_df.index[-1])

            outf=r'D:\python\18000-02s-pic-'+datetime.datetime.strftime(star_t,'%Y-%m-%d_%H%M')+'.png'
            fig.savefig(outf,bbox_inches = 'tight') 
    
    nan_count    = data.resample("0.5H").count()
    first_mean   = data.resample("0.5H").mean()
    first_std    = data.resample("0.5H").std()
    first_median =  data.resample("0.5H").median()
    
    writer = pd.ExcelWriter(r'D:\python\18000_02s-describe_'+str(n)+'.xlsx')
    nan_count.to_excel(writer, sheet_name="nan_count")
    first_mean.to_excel(writer, sheet_name="first_mean")
    first_std.to_excel(writer, sheet_name="first_std") 
    first_median.to_excel(writer, sheet_name="first_median")
    writer.save()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容