一、概述
是不是觉得它是一个线程?不要被名字迷惑,它并不是一个线程。
在《从源码理解Android Handler消息机制》一文中,我们提到ThreadLocal,当时我们这么解释:ThreadLocal 你可以理解为保存一个在线程范围内可见的变量。那么ThreadLocal是如何做到的呢?Follow Me ,看看源码如何实现的。
二、源码分析
平常我们使用ThreadLocal都是调用其set()和get()方法,基于这两个方法为切入点我们来分析下它的实现原理。
老规矩,源码是最好的解释,直接上源码:
代码 1.1
public void set(T value) {
Thread t = Thread.currentThread();//获取当前调用的线程
ThreadLocalMap map = getMap(t);//往下面看
if (map != null)
map.set(this, value);//直接往map添加数据 查看代码1.3
else
createMap(t, value);//查看代码1.2
}
ThreadLocalMap getMap(Thread t) {
//直接返回线程的一个变量 我们发现是 ThreadLocal.ThreadLocalMap threadLocals = null;
return t.threadLocals;
}
static class ThreadLocalMap {}//名字叫Map 并没有实现Map接口
上边的set()方法里主要内容:
- 获取线程的ThreadLocalMap threadLocals 对象;
- 根据threadLocals 是否为空来决定是创建ThreadLocalMap 还是往ThreadLocalMap 添加对象;
下边看下createMap方法:
代码 1.2
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);//生成ThreadLocalMap
}
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {//ThreadLocal为key
table = new Entry[INITIAL_CAPACITY];
//注意ThreadLocal的threadLocalHashCode
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
/**
* The initial capacity -- MUST be a power of two.
*/
private static final int INITIAL_CAPACITY = 16;//必须是二的幂
createMap()方法里主要做了:
- 生成ThreadLocalMap实例;
- 用ThreadLocal作为key,然后生成一个节点放入数组,至于数组位置,则由ThreadLocal的threadLocalHashCode&(INITIAL_CAPACITY -1)决定;
- INITIAL_CAPACITY 这个值必须是2的幂,初始为16;
- 神奇的 0x61c88647 ,每当我们new一个ThreadLocal对象,新对象的threadLocalHashCode值等于在静态变量nextHashCode变量上加 0x61c88647,至于原因看下边的数据测试:
public class ThreadLocal<T> {
private final int threadLocalHashCode = nextHashCode();
private static AtomicInteger nextHashCode = new AtomicInteger();//原子变量 通过CAS操作更新
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
//我们看下 0x61c88647如何神奇:
public static void main(String[] args) {
int hashCode = 0x61c88647;
System.out.println("数组length 为 16 ");
for(int i =0;i<16;i++){
System.out.print((15&(i*hashCode))+" ");
}
System.out.println("");
System.out.println("数组length 为 32 ");
for(int i =0;i<32;i++){
System.out.print((31&(i*hashCode))+" ");
}
}
运行结果:
数组length 为 16
0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9
数组length 为 32
0 7 14 21 28 3 10 17 24 31 6 13 20 27 2 9 16 23 30 5 12 19 26 1 8 15 22 29 4 11 18 25
结果很神奇,这个跟数学相关,我也不是很清楚为什么,总之运行结果是散列的分散在数组中。
接下来我们看下ThreadLocalMap 的 set()方法:
代码1.3
private void set(ThreadLocal key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);//有没有很熟悉
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {//线性探测法
ThreadLocal k = e.get();
if (k == key) {//key相同 替换值
e.value = value;
return;
}
//Entry 集成自 WeakReference<ThreadLocal> k很有可能为null
if (k == null) {
replaceStaleEntry(key, value, i);//查看代码1.4
return;
}
}
tab[i] = new Entry(key, value);//表里没数据 生成节点加入进去
int sz = ++size;//更改当前size
if (!cleanSomeSlots(i, sz) && sz >= threshold)//判断是否触发阈值 触发则扩容
rehash();//查看代码1.7
}
主要用线性探测法向数组中确定节点位置,与HashMap的链地址法实现方式不一样。
代码1.4
//replaceStaleEntry方法
private void replaceStaleEntry(ThreadLocal key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
int slotToExpunge = staleSlot;//记录删除节点位置起始位置
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))//从数组往前找 有节点但节点无key值则更新slotToExpunge ,否则停止查找
if (e.get() == null)
slotToExpunge = i;
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {//线性探索查找key相同节点
ThreadLocal k = e.get();
if (k == key) {//如果 k == key 则更新value 讲该节点更新到 staleSlot位置上
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
//清除部分节点expungeStaleEntry()查看代码1.5 cleanSomeSlots()查看代码1.6
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);//未找到 生成新节点放入
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
代码1.5 方法expungeStaleEntry()
// 从删除节点到后边遍历 到第一个为 null节点之间的节点都经过检测 返回第一个null节点位置
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;//删除该位置节点
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {//从当前节点现象探索遍历
ThreadLocal k = e.get();
if (k == null) {//删除 key为null节点
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);//根据数组长度计算出新的位置 因为数组有可能扩容
if (h != i) {//不相等的情况需要改变该节点位置
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)//讲h位置节点进行线性探测法确定位置
h = nextIndex(h, len);
tab[h] = e;//讲e节点更新到h位置
}
}
}
return i;
}
代码 1.6 方法cleanSomeSlots() 用于清除线性探索方向上的空节点
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);// 见 2.2.2
}
} while ( (n >>>= 1) != 0);//n = n>>>1 无符号右移动并赋值 这边每次除以2有点不太理解 欢迎大家讨论
return removed;
}
代码 1.7
private void rehash() {
expungeStaleEntries(); //见下边
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();//见1.8
}
/**
* Expunge all stale entries in the table.
*/
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);//见1.5
}
}
}
代码1.8 resize()
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;//扩容 容量依然是2的幂
Entry[] newTab = new Entry[newLen];//生成新的数组
int count = 0;
for (int j = 0; j < oldLen; ++j) {//遍历旧的数组
Entry e = oldTab[j];
if (e != null) {
ThreadLocal k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);//计算在新数组中的位置
while (newTab[h] != null)// 冲突后 线性探测法
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
//更新属性
setThreshold(newLen);
size = count;
table = newTab;
}
上边就是ThreadLocal中set()方法的实现,主要: 向数组中插入节点,根据key (ThreadLocal)的threadLocalHashCode&(len-1)决定位置,然后根据线性探索法解决冲突问题,包括如果数组size超过阈值则扩容。
下边分析下get()方法:
代码2.1
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);//查看2.2
if (e != null)
return (T)e.value;
}
return setInitialValue();//这是一个空方法,如果未命中则调用用该方法返回的默认value
}
代码2.2
private Entry getEntry(ThreadLocal key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;//命中
else
return getEntryAfterMiss(key, i, e);//未命中 见下方
}
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {//线性探索查找
ThreadLocal k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;//未找到返回null
}
通过get()我们可以看出:
- 根据key (ThreadLocal)的threadLocalHashCode&(len-1)位置的值是否命中,命中返回,没有命中则根据线性探索法查找节点;
- 第一步没找到则调用setInitialValue()方法返回值来充当返回值,该方法用户可以重写;
下边看下remove()方法
代码3.1
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);// 见下方
}
private void remove(ThreadLocal key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);//熟不熟悉
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {//线性探索法查找
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);//见1.5
return;
}
}
}
三、总结
上边就是为大家分析的ThreadLocal的实现,主要实现依靠:
- 每个线程保留一个ThreadLocalMap 变量;
- 当我们向ThreadLocal中放入值的时候,其实我们是将值放入到了Thread的threadLocals中;
- 没当我们实例一个ThreadLocal的时候,该实例的threadLocalHashCode值会改变,ThreadLocalMap中的table数组长度记为len,则不同实例的threadLocalHashCode&(len-1)会散列在table数组的不同位置;
- ThreadLocalMap中table属性中的Entry继承自WeakReference<ThreadLocal>,所以key很容易被回收;
- 当出现hash冲突时,是使用线性探索法查找,不同于HashMap的查找原理;
以上就是为大家分享的ThreadLocal源码分析。感谢你的耐心阅读,如有错误,欢迎指正。如果本文对你有帮助,记得点赞。欢迎关注我的微信公众号: