论文阅读_扩散模型_DM

英文名称: Deep Unsupervised Learning using Nonequilibrium Thermodynamics
中文名称: 使用非平衡热力学原理的深度无监督学习
论文地址: http://arxiv.org/abs/1503.03585
代码地址: https://github.com/Sohl-Dickstein/Diffusion-Probabilistic-Models
时间: 2015-11-18
作者: Jascha Sohl-Dickstein, 斯坦福大学
引用量: 1813

读后感

论文目标是建立灵活且易用数据生成模型。它利用非平衡统计物理学原理:通过扩散过程(少量加噪)系统地、缓慢地破坏数据分布中的结构;然后,学习反向扩散过程,恢复数据结构。

介绍

扩散模型与变分模型

扩散模型与变分模型原理类似,都是将图片拆成一系列高斯分布的均值和方差,而扩散模型是一个逐步变化的过程,主要差别如下:

  • 原理不同:扩散模型使用物理学、准静态过程和退火采样的思想。由于任何平滑目标分布都存在扩散过程,因此理论上该方法可以捕获任意形式的数据分布。
  • 展示了用简单的乘法,将一个分布逐步转换为另一分布的过程。
  • 解决了推理模型和生成模型之间目标的不对称性,将正向(推理)过程限制为简单的函数形式,反向(生成)过程将具有相同的函数形式。
  • 可训练具有数千层(时间步)的模型。
  • 精细控制每层中熵产生的上限和下限。

方法

请记住图中这些符号,很多后续文章都延用了这些符号的定义。

向前轨迹

其中蓝色是扩散过程,从左往右看,总共T步,每步加一点高斯噪声,将瑞士卷图扩散成了高斯分布,扩展过程设为q。每步都根据上一步数据而来:
q\left(\mathbf{x}^{(0 \cdots T)}\right)=q\left(\mathbf{x}^{(0)}\right) \prod_{t=1}^{T} q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)

反向轨迹

中间红色部分是扩散的逆过程,从右往左看,图片逐步恢复,恢复过程设为p;在训练过程中,通过学习高斯扩散的逆过程,使数据转换回原分布,从而生成数据。
p\left(\mathbf{x}^{(0 \cdots T)}\right)=p\left(\mathbf{x}^{(T)}\right) \prod_{t=1}^{T} p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right)
最后一行展示了反向扩散过程的漂移项。fμ (x(t), t) 是高斯逆马尔可夫转移的均值和协方差的函数。

扩散的原理是通过马尔可夫链逐渐将一种分布转换为另一种分布。最终,估计概率分布的任务简化为对高斯序列的均值和协方差函数的回归任务(这里的0状态指的是原始图,T状态指高斯分布图);由于扩散链中的每个步骤都具有可分析评估的概率(对比正向和反向变化中每一步数据的相似度),因此也可以对整个链进行分析评估。

模型概率

计算将图像恢复成原图的概率,可拆解成每一步变化的累积。
\begin{aligned} p\left(\mathbf{x}^{(0)}\right)= & \int d \mathbf{x}^{(1 \cdots T)} p\left(\mathbf{x}^{(0 \cdots T)}\right) \frac{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)}{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)} \\ = & \int d \mathbf{x}^{(1 \cdots T)} q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0 \cdots T)}\right)}{q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right)} \\ = & \int d \mathbf{x}^{(1 \cdots T)} q\left(\mathbf{x}^{(1 \cdots T)} \mid \mathbf{x}^{(0)}\right) \\ & p\left(\mathbf{x}^{(T)}\right) \prod_{t=1}^{T} \frac{p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right)}{q\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)} \end{aligned}

训练

具体方法是计算熵 H 和 KL 散度。其推导与变分贝叶斯方法中对数似然界限的推导类似。DK散度描述了每一时间步数据分布的差异,熵描述了数据的混乱程度。
\begin{aligned} L & \geq K \\ K= & -\sum_{t=2}^{T} \int d \mathbf{x}^{(0)} d \mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) . \\ & D_{K L}\left(q\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \| p\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right)\right) \\ & +H_{q}\left(\mathbf{X}^{(T)} \mid \mathbf{X}^{(0)}\right)-H_{q}\left(\mathbf{X}^{(1)} \mid \mathbf{X}^{(0)}\right)-H_{p}\left(\mathbf{X}^{(T)}\right) . \end{aligned}
设置扩散率 βt
热力学中,在平衡分布之间移动时所采取的时间表决定了损失多少自由能。简单地说,就是如何设置每一步变化的大小。一般情况下,第一步β设成一个很小的常数,以防过拟合,然后2-T步逐步扩大。将在之后的DDPM中详述。

乘以分布计算后验

对大多数模型而言,乘以分布计算量大,而在扩散模型中则比较简单,第二个分布可以被视为扩散过程中每个步骤的小扰动。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容