所谓的最短路径,顾名思义就是带权值的图中,求一个结点到另一个结点的路径最小。
Dijkstra算法
1.介绍
迪杰斯特拉(Dijkstra)算法是典型的最短路径算法,用于计算一个结点到其他结点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本思想
通过Dijkstra计算图G中的最短路径,需要指定起点s(即从顶点s开始计算)。
此外,引出两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起始点的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是“起点s到该顶点的路径”。然后,从U中找出最短路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。...重复该操作,直到遍历完所有顶点。
操作步骤
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
2.图解
以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
3.代码说明
package com.xushu;
public class ListUDG {
private static int INF = Integer.MAX_VALUE;
// 邻接表中表对应的链表的顶点
private class ENode {
int ivex; // 该边所指向的顶点的位置
int weight; // 该边的权
ENode nextEdge; // 指向下一条弧的指针
}
// 邻接表中表的顶点
private class VNode {
char data; // 顶点信息
ENode firstEdge; // 指向第一条依附该顶点的弧
};
private int mEdgNum; // 边的数量
private VNode[] mVexs; // 顶点数组
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* edges -- 边
*/
public ListUDG(char[] vexs, EData[] edges) {
// 初始化"顶点数"和"边数"
int vlen = vexs.length;
int elen = edges.length;
// 初始化"顶点"
mVexs = new VNode[vlen];
for (int i = 0; i < mVexs.length; i++) {
mVexs[i] = new VNode();
mVexs[i].data = vexs[i];
mVexs[i].firstEdge = null;
}
// 初始化"边"
mEdgNum = elen;
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
char c1 = edges[i].start;
char c2 = edges[i].end;
int weight = edges[i].weight;
// 读取边的起始顶点和结束顶点
int p1 = getPosition(c1);
int p2 = getPosition(c2);
// 初始化node1
ENode node1 = new ENode();
node1.ivex = p2;
node1.weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == null)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
ENode node2 = new ENode();
node2.ivex = p1;
node2.weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == null)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 将node节点链接到list的最后
*/
private void linkLast(ENode list, ENode node) {
ENode p = list;
while(p.nextEdge!=null)
p = p.nextEdge;
p.nextEdge = node;
}
/*
* 返回ch位置
*/
private int getPosition(char ch) {
for(int i=0; i<mVexs.length; i++)
if(mVexs[i].data==ch)
return i;
return -1;
}
/*
* 打印矩阵队列图
*/
public void print() {
System.out.printf("List Graph:\n");
for (int i = 0; i < mVexs.length; i++) {
System.out.printf("%d(%c): ", i, mVexs[i].data);
ENode node = mVexs[i].firstEdge;
while (node != null) {
System.out.printf("%d(%c) ", node.ivex, mVexs[node.ivex].data);
node = node.nextEdge;
}
System.out.printf("\n");
}
}
/*
* 获取边<start, end>的权值;若start和end不是连通的,则返回无穷大。
*/
private int getWeight(int start, int end) {
if (start==end)
return 0;
ENode node = mVexs[start].firstEdge;
while (node!=null) {
if (end==node.ivex)
return node.weight;
node = node.nextEdge;
}
return INF;
}
/*
* Dijkstra最短路径。
* 即,统计图中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
public void dijkstra(int vs, int[] prev, int[] dist) {
// flag[i]=true表示"顶点vs"到"顶点i"的最短路径已成功获取。
boolean[] flag = new boolean[mVexs.length];
// 初始化
for (int i = 0; i < mVexs.length; i++) {
flag[i] = false; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = getWeight(vs, i); // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = true;
dist[vs] = 0;
// 遍历mVexs.length-1次;每次找出一个顶点的最短路径。
int k = 0;
for (int i = 1; i < mVexs.length; i++) {
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
int min = INF;
for (int j = 0; j < mVexs.length; j++) {
if (flag[j]==false && dist[j]<min) {
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = true;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (int j = 0; j < mVexs.length; j++) {
int tmp = getWeight(k, j);
tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出
if (flag[j]==false && (tmp<dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
System.out.printf("dijkstra(%c): \n", mVexs[vs].data);
for (int i = 0; i < mVexs.length; i++)
System.out.printf(" shortest(%c, %c)=%d\n", mVexs[vs].data, mVexs[i].data, dist[i]);
}
// 边的结构体
private static class EData {
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
};
public static void main(String[] args) {
char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
EData[] edges = {
// 起点 终点 权
new EData('A', 'B', 12),
new EData('A', 'F', 16),
new EData('A', 'G', 14),
new EData('B', 'C', 10),
new EData('B', 'F', 7),
new EData('C', 'D', 3),
new EData('C', 'E', 5),
new EData('C', 'F', 6),
new EData('D', 'E', 4),
new EData('E', 'F', 2),
new EData('E', 'G', 8),
new EData('F', 'G', 9),
};
ListUDG pG;
// 采用已有的"图"
pG = new ListUDG(vexs, edges);
int[] prev = new int[pG.mVexs.length];
int[] dist = new int[pG.mVexs.length];
// dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
pG.dijkstra(3, prev, dist);
}
}
Floyd算法
1.介绍
和Dijkstra算法一样,佛洛依德(Floyd)算法也是一种用于寻找给定的加权图顶点间最短路径的算法。
基本思想
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。接下来开始,对矩阵S进行N次更新。第一次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!
2.图解
以上图为例,进行演示:
初始状态:S是记录各个顶点间最短路径的矩阵。
第1步:初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。
注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
以顶点a[1][6]为例,初始的时候,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。
同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。
3.代码说明
public class ListUDG {
private static int INF = Integer.MAX_VALUE;
// 邻接表中表对应的链表的顶点
private class ENode {
int ivex; // 该边所指向的顶点的位置
int weight; // 该边的权
ENode nextEdge; // 指向下一条弧的指针
}
// 邻接表中表的顶点
private class VNode {
char data; // 顶点信息
ENode firstEdge; // 指向第一条依附该顶点的弧
};
private int mEdgNum; // 边的数量
private VNode[] mVexs; // 顶点数组
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* edges -- 边
*/
public ListUDG(char[] vexs, EData[] edges) {
// 初始化"顶点数"和"边数"
int vlen = vexs.length;
int elen = edges.length;
// 初始化"顶点"
mVexs = new VNode[vlen];
for (int i = 0; i < mVexs.length; i++) {
mVexs[i] = new VNode();
mVexs[i].data = vexs[i];
mVexs[i].firstEdge = null;
}
// 初始化"边"
mEdgNum = elen;
for (int i = 0; i < elen; i++) {
// 读取边的起始顶点和结束顶点
char c1 = edges[i].start;
char c2 = edges[i].end;
int weight = edges[i].weight;
// 读取边的起始顶点和结束顶点
int p1 = getPosition(c1);
int p2 = getPosition(c2);
// 初始化node1
ENode node1 = new ENode();
node1.ivex = p2;
node1.weight = weight;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == null)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
ENode node2 = new ENode();
node2.ivex = p1;
node2.weight = weight;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == null)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 将node节点链接到list的最后
*/
private void linkLast(ENode list, ENode node) {
ENode p = list;
while(p.nextEdge!=null)
p = p.nextEdge;
p.nextEdge = node;
}
/*
* 返回ch位置
*/
private int getPosition(char ch) {
for(int i=0; i<mVexs.length; i++)
if(mVexs[i].data==ch)
return i;
return -1;
}
/*
* 打印矩阵队列图
*/
public void print() {
System.out.printf("List Graph:\n");
for (int i = 0; i < mVexs.length; i++) {
System.out.printf("%d(%c): ", i, mVexs[i].data);
ENode node = mVexs[i].firstEdge;
while (node != null) {
System.out.printf("%d(%c) ", node.ivex, mVexs[node.ivex].data);
node = node.nextEdge;
}
System.out.printf("\n");
}
}
/*
* 获取边<start, end>的权值;若start和end不是连通的,则返回无穷大。
*/
private int getWeight(int start, int end) {
if (start==end)
return 0;
ENode node = mVexs[start].firstEdge;
while (node!=null) {
if (end==node.ivex)
return node.weight;
node = node.nextEdge;
}
return INF;
}
/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
public void floyd(int[][] path, int[][] dist) {
// 初始化
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++) {
dist[i][j] = getWeight(i, j); // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}
// 计算最短路径
for (int k = 0; k < mVexs.length; k++) {
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++) {
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
int tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp) {
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}
// 打印floyd最短路径的结果
System.out.printf("floyd: \n");
for (int i = 0; i < mVexs.length; i++) {
for (int j = 0; j < mVexs.length; j++)
System.out.printf("%2d ", dist[i][j]);
System.out.printf("\n");
}
}
// 边的结构体
private static class EData {
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
};
public static void main(String[] args) {
char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
EData[] edges = {
// 起点 终点 权
new EData('A', 'B', 12),
new EData('A', 'F', 16),
new EData('A', 'G', 14),
new EData('B', 'C', 10),
new EData('B', 'F', 7),
new EData('C', 'D', 3),
new EData('C', 'E', 5),
new EData('C', 'F', 6),
new EData('D', 'E', 4),
new EData('E', 'F', 2),
new EData('E', 'G', 8),
new EData('F', 'G', 9),
};
ListUDG pG;
// 自定义"图"(输入矩阵队列)
//pG = new ListUDG();
// 采用已有的"图"
pG = new ListUDG(vexs, edges);
int[] prev = new int[pG.mVexs.length];
int[] dist = new int[pG.mVexs.length];
;
int[][] path = new int[pG.mVexs.length][pG.mVexs.length];
int[][] floy = new int[pG.mVexs.length][pG.mVexs.length];
// floyd算法获取各个顶点之间的最短距离
pG.floyd(path, floy);
}
}