算法(13)-近似算法

  • 很多实际问题是NP完全问题, 那么求解有三种策略: (1)如果实际输入数据规模较小, 用指数级算法直接求解 (2)对于一些能在多项式时间内解决的特殊情况, 可以单独列出来求解 (3)寻找在多项式时间内得到近似最优解的算法

近似算法的性能比

  • 规模为n的任意输入, 近似算法获得的近似解C与精确最优解的代价C*只差一个因子ρ(n):
    max(C/C*, C*/C) <= ρ(n)
    ρ(n)是该算法的近似比.

近似模式(一般与完美)

对一个近似模式来说, 如果误差参数e>0是一个固定值, 且该模式都以其输入实例规模n的多项式时间运行, 则称此模式为多项式时间近似模式, 比如O(n^(1/e))
对于一个近似模式来说, 如果其运行时间表达式为1/e的多项式, 又是输入实例n的多项式, 那么这就是完全的(也可以说是完美的)多项式时间的近似模式. 近似模式的运行时间可能是O(1/e2*n3)

顶点覆盖问题VertexCover

Approx-Vertex-Cover(G):
C = ∅
E' = G.E
while E' ≠ ∅:
    let (u, v) be an arbitrary edge of E'
    C = C∪{u, v}
    remove from E' every edge incident on either u or v
return C

证明: 这是一个2近似算法
|C|>=|A| #A是被标成红色的边, C是最优的覆盖需要的顶点数
|C|=2|A| #C是近似的覆盖需要的顶点数
|C| = 2|A| <= 2|C*|

旅行商问题

  • 求旅行商问题, 在增加一个三角不等式的条件后, 可以得到一个近似算法;
    -三角不等式: c(u, v) <= c(u, m) + c(m, v) (其中m是一个中间结点)
  • 输入:
Approx-TSP(G, C)
choose a r∈G.V as the root of MST
use MST-Prim(G, C, r) to get a MST
root-first order to traverse the MST tree and get a list L of vertexes 
#先根遍历意味着Root-Left-Right的顺序
follow L and form a Ham-Cycle
  • 时间复杂度分析: MST-Prim按道理是O(E+logV), 此处是完全图, 因此E=V^2, 因此整个算法最后是O(V^2)
  • 解的精确度:
    Approx-TSP具有性能比2. 先序遍历解H删掉一条边, 就是一个过所有点的生成树, 而所有的生成树的边的总代价肯定都大于等于最小生成树MST, 所以有C(T)<=C(T')<=C(H).
    再者, 先序遍历中如果不允许跨越的话, 直接严格在MST上走的路线W, 恰好是把最小生成树MST上的每条边走了两次, 因此C(W)=2C(T).
    最后, C(W)>=C(H), 这是因为三角不等式被作为一个前提条件, 换句话说, 借助中间点没有两点直接连接的代价小.
    综合看, 2C(T)>=C(H), 2C(H*)>=2C(T), --> 2C(H*)>=C(H), C(H)/C(H*) <= 2, 因此我们解的性能比值为2.

集合覆盖问题

  • 算法是一个贪心算法, 每次选一个尽可能大地多覆盖一些未触及点的集合.
Greedy-Set-Cover(X, F) #F是X的子集族
U = X   #Undiscovered dots
e = ∅  #e collects sets.
while U ≠ ∅:  #仍然有未发现的点
    select an S∈F that maximizes |S∩U|  #S∩U代表S集合能够覆盖的Undiscovered dots, 此处选能覆盖最多的S
    U = U-S  #remove those covered by S
    e = e∪{S}  #bring S in
return e  #返回这些集合

算法时间:多项式时间的ρ(n)近似算法, ln|X|+1.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容

  • "use strict";function _classCallCheck(e,t){if(!(e instanc...
    久些阅读 2,027评论 0 2
  • 在C语言中,五种基本数据类型存储空间长度的排列顺序是: A)char B)char=int<=float C)ch...
    夏天再来阅读 3,320评论 0 2
  • 以西瓜书为主线,以其他书籍作为参考进行补充,例如《统计学习方法》,《PRML》等 第一章 绪论 1.2 基本术语 ...
    danielAck阅读 4,484评论 0 6
  • mean to add the formatted="false" attribute?.[ 46% 47325/...
    ProZoom阅读 2,689评论 0 3
  • ​我喜欢上骚扰电话。 大家会好奇,骚扰电话躲都来不及,还喜欢上接听,那是有什么地方吸引你呢? 也不知为什么,我跟...
    绿乐夫斯基阅读 117评论 0 0