Redis Cluster 原理

Redis Cluster 提供了一种支持数据在多个 Redis 节点上自动进行分片的部署方式。
Redis Cluster 主要是为了实现以下这些目标(按在设计中的重要性排序):

  • 在多达 1000 个节点的时候仍能保持高性能及线性的可扩展性。没有代理,使用异步复制,并且不对值执行合并操作。
  • 可接受的写入安全:与多数派节点相连的客户端所做的写入操作,系统尝试全部都保存下来(以最大努力的方式)。不过极小概率下容忍小部分写入会丢失。
  • 可用性:分区情况下在多数派这边,当绝大多数的主节点是可达的,并且对于每一个不可达的主节点都至少有一个它的从节点可达的情况下,Redis Cluster 仍能提供服务。

通信协议

在 Redis 集群中,节点负责存储数据、记录集群的状态(包括 slots 信息)。集群节点同样能自动发现其他节点,检测出异常节点, 并且在需要的时候在从节点中推选出主节点。

为了执行这些任务,所有的集群节点都通过 TCP 连接和一个被称作 “Redis Cluster Bus” 的二进制协议进行通信。 每一个节点都通过集群总线与集群上的其余每个节点连接起来。节点们使用 Gossip 协议来传播集群的信息,使用 Gossip 协议的最大的好处是:即使集群节点的数量增加,每个节点的负载也不会增加很多,几乎是恒定的。这就允许 Redis Cluster 集群管理的节点规模能横向扩展到数千个。

Redis Cluster 中的每个节点都维护一份自己视角下的当前整个集群的状态,主要包括:

  • 当前集群状态
  • 集群中各节点所负责的 slots 信息,及其 migrate 状态
  • 集群中各节点的 master-slave 状态
  • 集群中各节点的存活状态及怀疑 Fail 状态

也就是说上面的信息,就是集群中Node相互八卦传播流言蜚语的内容主题,而且比较全面,既有自己的更有别人的,这么一来大家都相互传,最终信息就全面而且一致了。

消息类型

Redis Cluster 的节点之间会相互发送多种消息,较为重要的如下所示:

  • MEET:通过 CLUSTER MEET 命令,已有集群的节点会向新的节点发送邀请,加入现有集群,然后新节点就会开始与其他节点进行通信。
  • PING:节点按照配置的时间间隔向集群中其他节点发送 PING 消息,消息中带有自己的状态,还有自己维护的集群元数据,和部分其他节点的元数据,用于检测其他节点是否异常。
  • PONG: 用于回应 PING 和 MEET 的消息,结构和 PING 消息类似。一个节点也可以通过向集群广播自己的PONG 消息来让集群中的其他节点立即刷新关于这个节点的认识,例如当一次故障转移操作成功执行之后,新的主节点会向集群广播一条 PONG 消息,以此来让集群中的其他节点立即知道这个节点已经变成了主节点。
  • FAIL: 节点 PING 不通某节点后,会向集群所有节点广播该节点挂掉的消息,其他节点收到消息后标记已下线。

数据分片

哈希算法

关于数据分片方案最容易想到的的就是哈希算法,即对 key 计算一个 hash 值,然后对 master 节点个数取模,可以让 key 均匀分布到集群的各个节点上。

hash 分片

但这种模式其实存在较大的隐患,如上图所示,当一个节点故障后,将会导致整个集群的缓存失效。例如开始的算法为 hash(key) % 3,当一个节点故障后变为 hash(key) % 2,导致整个集群的大多数 key 都会因为取模变化而失效,从而导致缓存失效。当这种情况发生在缓存系统上时,整个系统的运行都有可能崩溃。

一致性哈希算法

既然普通的哈希算法存在上述的问题,于是就有人提出了一致性哈希算法,算法不再是对 master 节点数量来取模,而是固定对 2^32 取模,也就是值的范围在 [0, 2^32 -1] 。一致性哈希将其范围抽象成了一个圆环,使用CRC16 算法计算出来的哈希值会落到圆环上的某个地方。

同时 Redis 实例也分布在圆环上,计算出的值在圆环上按照顺时针的顺序找到第一个 Redis 实例即是服务实例,通过这样完成对 key 的节点分配。

一致性哈希

如图所示,对于 key A 来说将找到 Node 3 节点,而对 key B 来说将找到 Node 2节点。

节点故障

即便是当有节点发生故障,如图当 Node 3 发生故障时候,key A 将顺序找到 Node 2 进行服务。Node 3 的故障只导致了 Node 1 ~ Node 3 中间的 key 发生了转移,相较与普通哈希算法,对整个集群的影响已经大大减少了。

哈希不均匀

一致性哈希算法,也存在一些问题。如上图所示,当集群中节点较少时候,很容易产生节点在环上分布不均匀的情况,这样势必导致每个节点的负载不一致。节点分布的不均衡,非常容易导致系统的不稳定性或者资源的浪费。

虚拟节点

于是又引入了虚拟节点的概念,为系统内的节点增加虚拟节点,虚拟节点与真实节点的功能一致,只是为了变相增加集群内节点的数量,从而使得节点能均匀的分步到 hash 环上。

Hash Slots

Redis Cluster 没有使用一致性哈希算法, 而是引入了哈希槽的概念。

Redis Cluster 中有 16384(2^14) 个哈希槽,每个 key 通过 CRC16 计算后对 16384 取模来决定放置哪个槽,然后决定服务节点。集群的每个节点负责一部分哈希槽,举个例子,比如当前集群有3个节点,那么可以这么分配哈希槽:

  • 节点 A 包含 0 到 5500 号哈希槽
  • 节点 B 包含 5501 到 11000 号哈希槽
  • 节点 C 包含 11001 到 16383号哈希槽
hash slots

这种结构很容易添加或删除节点。 比如我们想新添加个节点 D,我需要从节点 A,B,C 中移动部分哈希槽到节点 D 上。如果我想移除节点 A,需要将 A 中的哈希槽移到 B 和 C 节点上,然后将没有任何哈希槽的 A 节点从集群中移除即可。由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加、删除或者改变某个节点的哈希槽的数量都不会造成集群不可用。

深度图解Redis Cluster原理
Redis cluster tutorial

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容