What is a good film?国新1501 张松雪

Part1: Short form essay

1. Explanation

The story is mainly about what kind of movie will have long-term effect in the movie history and influence and inspire people a lot on earth? Through analyzing the data list of the movies on show recently and observe the characters of the excellent movies on TOP250 Douban Movie list maybe I can tell people the answer.

I choose this particular angle is because that the China’s film market is booming nowadays, we definitely have more films every year but with fewer great ones. By analyzing I want to find what will make an influential and excellent film and what should filmmakers do in the future to produce more great movies for us.

2. A list of the data sources (见Excel表格)

3. Data reduction

Cleaned:

表一:

def pylot_show():       

sql = 'select * from douban;'         

cur.execute(sql)       

rows = cur.fetchall()  # 把表中所有字段读取出来       

count = []  # 每个分类的数量       

category = []  # 分类             

for row in rows:           

count.append(int(row[2]))               

category.append(row[1])             

y_pos = np.arange(len(category))    # 定义y轴坐标数       

plt.barh(y_pos, count, align='center', alpha=0.4)  # alpha图表的填充不透明度(0~1)之间       

plt.yticks(y_pos, category)  # 在y轴上做分类名的标记             

for count, y_pos in zip(count, y_pos):           

# 分类个数在图中显示的位置,就是那些数字在柱状图尾部显示的数字          plt.text(count, y_pos, count,  horizontalalignment='center', verticalalignment='center', weight='bold')         

plt.ylim(+28.0, -1.0) # 可视化范围,相当于规定y轴范围       

plt.title(u'电影种类')  # 图表的标题       

plt.ylabel(u'电影分类')    # 图表y轴的标记       

plt.subplots_adjust(bottom = 0.15)         

plt.xlabel(u'年份')  # 图表x轴的标记       

Classified:

表二

按电影上映城市分类:

#!-*- coding:utf-8 -*-

import pandas as pd

import numpy as np

import matplotlib.pylab as plt

from matplotlib.font_manager import FontProperties  #fontproperties的模块,pyde自动添加的

Movie=pd.read_csv('MovieTop250.csv',encoding='utf-8')

country_iter=(set(x.split(' ')) for x in Movie['Country']) #generator生成器,分解字符串 countries=sorted(set.union(*country_iter)) #Return the union of sets as a new set. #*country_iter:

df=pd.DataFrame(np.zeros((len(Movie),len(countries))),columns=countries)#创建一个

0DataFrame,np.zeros()内为要tuple

for i,gen in enumerate(Movie['Country']):   

df.ix[i,gen.split(' ')]=1  #第i条数据的country置为1

num_of_country=df.sum() 

num_of_country[1]=num_of_country[0]+num_of_country[1]  #中国和中国大陆合并 num_of_country.pop('中国')

num_of_country.sort_values(inplace=True,ascending=False)

f1=plt.figure() for i,gen in enumerate(num_of_country[:10]):   

plt.bar(i,gen) 

#i为bar的起始横坐标,gen为纵坐标,宽度默认 names=list(num_of_country.index)

plt.xticks(np.arange(10)+0.4,names,fontproperties='SimHei')  #在图中显示中文字符要加上fontproperties='SimHei'

plt.ylabel('Movie Number')

plt.title('Douban

Movie\nMovie Distribution by Countries')

plt.savefig('Movie_Distribution_by_Countries.png')

f1.show()

按电影类型分类:

genre_iter=(set(x.split(' ')) for x in Movie['Grenre'])

genre=sorted(set.union(*genre_iter)) frame=pd.DataFrame(np.zeros((len(Movie),len(genre))),columns=genre)

for i,gen in enumerate(Movie['Grenre']):   

frame.ix[i,gen.split(' ')]=1

genre_sum=frame.sum()

genre_sum.sort_values(inplace=True,ascending=False)

f2=plt.figure(2)

'''for i,gen in enumerate(genre_sum[:8]): 

plt.bar(i,gen)

names=list(genre_sum.index)

plt.xticks(np.arange(8)+0.4,names,fontproperties='SimHei') plt.show()'''

4. Shortcomings

The data is scattered so it takes me a lot of time to classify. And I should compare and find the connection between my different data lists.

Part2: The story

With the development of the economy, people live a better life now. So they begin to transfer from pursuing material life to spiritual enjoyment. Nowadays more and more people will choose to enjoy a great film in their free time, so we also can see from the data that more films are produced and we have more different varieties.

But as the China’s film market is booming, making films just becomes a good way to make money instead of creating excellent artworks. That’s a serious problem which needs us to pay attention to. As we can see in the TOP250 Douban Movie list, most high-score movies are made between 1995-2013. There are 8 movies made in the 1990s of the TOP10. These excellent movies have very profound effect on people all over the world. As watching more great movies, people’s taste has been greatly improved, so they have higher requirement for the movies. But even with high technology nowadays, the filmmakers make fewer great movies. In the age of fast food culture, many films are produced in a rough way and just have plain and vulgar plots. That kind of films,which can reflect the real life and humanity become fewer and fewer. The quality of the films is ragged.

The highest score Chinese movie is Farewell to My Concubine, which is directed by Chen Kaige in 1993. It is a great film about love and belief. The film is very deep and thought-provoking. The performance of the main actors is also very touching. The great success of this movie just shows that we must make movie with respect and love. We must take it as a piece of art and pour our soul into it. That is the key to make a great film.

So after analyzing the data, I really hope that in the future we will have more and more great movies, which involve tradition and innovation and have profound influence in the movie history.


图片发自简书App


图片发自简书App
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容