celery

在程序的运行过程中,我们经常会碰到一些耗时耗资源的操作,为了避免它们阻塞主程序的运行,我们经常会采用多线程或异步任务。比如,在 Web 开发中,对新用户的注册,我们通常会给他发一封激活邮件,而发邮件是个 IO 阻塞式任务,如果直接把它放到应用当中,就需要等邮件发出去之后才能进行下一步操作,此时用户只能等待再等待。更好的方式是在业务逻辑中触发一个发邮件的异步任务,而主程序可以继续往下运行。

Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。它的架构组成如下图:

img

可以看到,Celery 主要包含以下几个模块:

  • 任务模块

    包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列

  • 消息中间件 Broker

    Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQRedis 等。

  • 任务执行单元 Worker

    Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它.

  • 任务结果存储 Backend

    Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, RedisMongoDB 等。

1.异步任务

使用 Celery 实现异步任务主要包含三个步骤:

创建一个 Celery 实例
启动 Celery Worker
应用程序调用异步任务

2.快速入门

为了简单起见,对于 Broker 和 Backend,这里都使用 redis。在运行下面的例子之前,请确保 redis 已正确安装,并开启 redis 服务,当然,celery 也是要安装的。可以使用下面的命令来安装 celery 及相关依赖:

$ pip install 'celery[redis]'
3.创建 Celery 实例

将下面的代码保存为文件 tasks.py:

# -*- coding: utf-8 -*-

import time
from celery import Celery

broker = 'redis://127.0.0.1:6379'
backend = 'redis://127.0.0.1:6379/0'

app = Celery('my_task', broker=broker, backend=backend)

@app.task
def add(x, y):
    time.sleep(5)     # 模拟耗时操作
    return x + y

上面的代码做了几件事:

  • 创建了一个 Celery 实例 app,名称为 my_task;
  • 指定消息中间件用 redis,URL 为 redis://127.0.0.1:6379;
  • 指定存储用 redis,URL 为 redis://127.0.0.1:6379/0;
  • 创建了一个 Celery 任务 add,当函数被 @app.task 装饰后,就成为可被 Celery 调度的任务;
4.启动 Celery Worker

在当前目录,使用如下方式启动 Celery Worker:

$ celery worker -A tasks --loglevel=info

其中:

  • 参数 -A 指定了 Celery 实例的位置,本例是在 tasks.py 中,Celery 会自动在该文件中寻找 Celery 对象实例,当然,我们也可以自己指定,在本例,使用 -A tasks.app;
  • 参数 --loglevel 指定了日志级别,默认为 warning,也可以使用 -l info 来表示;

在生产环境中,我们通常会使用 Supervisor 来控制 Celery Worker 进程。

启动成功后,控制台会显示如下输出:(省略)

5.调用任务

现在,我们可以在应用程序中使用 delay() 或 apply_async() 方法来调用任务。

在当前目录打开 Python 控制台,输入以下代码:

>>> from tasks import add
>>> add.delay(2, 8)
<AsyncResult: 2272ddce-8be5-493f-b5ff-35a0d9fe600f>

在上面,我们从 tasks.py 文件中导入了 add 任务对象,然后使用 delay() 方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。我们将窗口切换到 Worker 的启动窗口,会看到多了两条日志

[2018-11-18 17:51:16,034: INFO/MainProcess] Received task: hello.add[9182510f-0275-4dab-865e-89299dbf79db]
[2018-11-18 17:51:21,048: INFO/MainProcess] Task hello.add[9182510f-0275-4dab-865e-89299dbf79db] succeeded in 5.012736028998916s: 10

这说明任务已经被调度并执行成功。

另外,我们如果想获取执行后的结果,可以这样做:

>>> result = add.delay(2, 6)
>>> result.ready()   # 使用 ready() 判断任务是否执行完毕
False
>>> result.ready()
False
>>> result.ready()
True
>>> result.get()     # 使用 get() 获取任务结果
8

在上面,我们是在 Python 的环境中调用任务。事实上,我们通常在应用程序中调用任务。比如,将下面的代码保存为 client.py:

# -*- coding: utf-8 -*-
from tasks import add

# 异步任务
add.delay(2, 8)

print 'hello world'

运行命令 $ python client.py,可以看到,虽然任务函数 add 需要等待 5 秒才返回执行结果,但由于它是一个异步任务,不会阻塞当前的主程序,因此主程序会往下执行 print 语句,打印出结果。

6.使用配置

在上面的例子中,我们直接把 BrokerBackend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.pyCelery 的配置比较多,可以在官方文档查询每个配置项的含义。

下面,我们再看一个例子。项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
    │   ├── __init__.py
    │   ├── celeryconfig.py    # 配置文件
    │   ├── task1.py           # 任务文件 1
    │   └── task2.py           # 任务文件 2
    └── client.py              # 应用程序

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery('demo')                                # 创建 Celery 实例
app.config_from_object('celery_app.celeryconfig')   # 通过 Celery 实例加载配置模块

celeryconfig.py 代码如下:

BROKER_URL = 'redis://127.0.0.1:6379'               # 指定 Broker
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'  # 指定 Backend

CELERY_TIMEZONE='Asia/Shanghai'                     # 指定时区,默认是 UTC
# CELERY_TIMEZONE='UTC'                             

CELERY_IMPORTS = (                                  # 指定导入的任务模块
    'celery_app.task1',
    'celery_app.task2'
)

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

client.py 代码如下:

# -*- coding: utf-8 -*-

from celery_app import task1
from celery_app import task2

task1.add.apply_async(args=[2, 8])        # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7])   # 也可用 task2.multiply.delay(3, 7)

print 'hello world'

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

 $ celery -A celery_app worker --loglevel=info

接着,运行 $ python client.py,它会发送两个异步任务到 Broker,在 Worker 的窗口我们可以看到如下输出:

[2018-11-18 18:27:46,537: INFO/MainProcess] Received task: celery_app.task1.add[c405fc86-5f36-4de2-814d-3c7962a7965f]
[2018-11-18 18:27:46,539: INFO/MainProcess] Received task: celery_app.task2.multiply[4a70cf4b-139d-4be0-9e9a-d8b8d5171cfd]
[2018-11-18 18:27:48,546: INFO/MainProcess] Task celery_app.task2.multiply[4a70cf4b-139d-4be0-9e9a-d8b8d5171cfd] succeeded in 2.006864537997899s: 21
[2018-11-18 18:27:48,546: INFO/MainProcess] Task celery_app.task1.add[c405fc86-5f36-4de2-814d-3c7962a7965f] succeeded in 2.007406972003082s: 10
7.delay 和 apply_async

在前面的例子中,我们使用 delay() 或 apply_async() 方法来调用任务。事实上,delay 方法封装了 apply_async,如下:

def delay(self, *partial_args, **partial_kwargs):
    """Shortcut to :meth:`apply_async` using star arguments."""
    return self.apply_async(partial_args, partial_kwargs)

也就是说,delay 是使用 apply_async 的快捷方式。apply_async 支持更多的参数,它的一般形式如下:

apply_async(args=(), kwargs={}, route_name=None, **options)

apply_async 常用的参数如下:

  • countdown:

    指定多少秒后执行任务

    task1.apply_async(args=(2, 3), countdown=5)    # 5 秒后执行任务
    
  • eta (estimated time of arrival):

    指定任务被调度的具体时间,参数类型是 datetime

    from datetime import datetime, timedelta
    
    # 当前 UTC 时间再加 10 秒后执行任务
    task1.multiply.apply_async(args=[3, 7], eta=datetime.utcnow() + timedelta(seconds=10))
    
  • expires:

    任务过期时间,参数类型可以是 int,也可以是 datetime

    task1.multiply.apply_async(args=[3, 7], expires=10)    # 10 秒后过期
    

    更多的参数列表可以在官方文档中查看。

8.定时任务

Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。

让我们看看例子,项目结构如下:

celery_demo                    # 项目根目录
    ├── celery_app             # 存放 celery 相关文件
        ├── __init__.py
        ├── celeryconfig.py    # 配置文件
        ├── task1.py           # 任务文件
        └── task2.py           # 任务文件

__init__.py 代码如下:

# -*- coding: utf-8 -*-

from celery import Celery

app = Celery('demo')
app.config_from_object('celery_app.celeryconfig')

celeryconfig.py代码如下:

# -*- coding: utf-8 -*-

from datetime import timedelta
from celery.schedules import crontab

# Broker and Backend
BROKER_URL = 'redis://127.0.0.1:6379'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'

# Timezone
CELERY_TIMEZONE='Asia/Shanghai'    # 指定时区,不指定默认为 'UTC'
# CELERY_TIMEZONE='UTC'

# import
CELERY_IMPORTS = (
    'celery_app.task1',
    'celery_app.task2'
)

# schedules
CELERYBEAT_SCHEDULE = {
    'add-every-30-seconds': {
         'task': 'celery_app.task1.add',
         'schedule': timedelta(seconds=30),       # 每 30 秒执行一次
         'args': (5, 8)                           # 任务函数参数
    },
    'multiply-at-some-time': {
        'task': 'celery_app.task2.multiply',
        'schedule': crontab(hour=9, minute=50),   # 每天早上 9 点 50 分执行一次
        'args': (3, 7)                            # 任务函数参数
    }
}

task1.py 代码如下:

import time
from celery_app import app

@app.task
def add(x, y):
    time.sleep(2)
    return x + y

task2.py 代码如下:

import time
from celery_app import app

@app.task
def multiply(x, y):
    time.sleep(2)
    return x * y

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令:

$ celery -A celery_app worker --loglevel=info

接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:

$ celery beat -A celery_app

之后,在 Worker 窗口我们可以看到,任务 task1 每 30 秒执行一次,而 task2 每天早上 9 点 50 分执行一次。

在上面,我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:

$ celery -B -A celery_app worker --loglevel=info

Celery 周期性任务也有多个配置项,可参考官方文档。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351