使用rescoring机制优化近似匹配搜索的性能

match和phrase match(proximity match)区别

match --> 只要简单的匹配到了一个term,就可以立即将term对应的doc作为结果返回,扫描倒排索引,扫描到了就ok

phrase match --> 首先扫描到所有term的doc list; 找到包含所有term的doc list; 然后对每个doc都计算每个term的position,是否符合指定的范围; slop,需要进行复杂的运算,来判断能否通过slop移动,匹配一个doc

match query的性能比phrase match和proximity match(有slop)要高很多。因为后两者都要计算position的距离。
match query比phrase match的性能要高10倍,比proximity match的性能要高20倍。

但是别太担心,因为es的性能一般都在毫秒级别,match query一般就在几毫秒,或者几十毫秒,而phrase match和proximity match的性能在几十毫秒到几百毫秒之间,所以也是可以接受的。

优化proximity match的性能,一般就是减少要进行proximity match搜索的document数量。主要思路就是,用match query先过滤出需要的数据,然后再用proximity match来根据term距离提高doc的分数,同时proximity match只针对每个shard的分数排名前n个doc起作用,来重新调整它们的分数,这个过程称之为rescoring,重计分。因为一般用户会分页查询,只会看到前几页的数据,所以不需要对所有结果进行proximity match操作。

用我们刚才的说法,match + proximity match同时实现召回率和精准度

默认情况下,match也许匹配了1000个doc,proximity match全都需要对每个doc进行一遍运算,判断能否slop移动匹配上,然后去贡献自己的分数
但是很多情况下,match出来也许1000个doc,其实用户大部分情况下是分页查询的,所以可能最多只会看前几页,比如一页是10条,最多也许就看5页,就是50条
proximity match只要对前50个doc进行slop移动去匹配,去贡献自己的分数即可,不需要对全部1000个doc都去进行计算和贡献分数

rescore:重打分

match:1000个doc,其实这时候每个doc都有一个分数了; proximity match,前50个doc,进行rescore,重打分,即可; 让前50个doc,term举例越近的,排在越前面

GET /forum/article/_search 
{
  "query": {
    "match": {
      "content": "java spark"
    }
  },
  "rescore": {
    "window_size": 50,
    "query": {
      "rescore_query": {
        "match_phrase": {
          "content": {
            "query": "java spark",
            "slop": 50
          }
        }
      }
    }
  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容