- 安装可视化工具
matplotlib
- 一个数学会图库,可以绘制简单的图标,折线图,散点图。
- 检查是否安装了
matplotlib
- 安装
matplotlib
,必须使用pip3-
pip3 install --user matplotlib
-
- 可访问 https://matplotlib.org查看可绘制的图形
# 绘制折线图
import matplotlib.pyplot as plt
# X轴对应的数据
x_value_list = [1, 2, 3, 4, 5]
# Y轴对应的数据
squares = [1, 4, 9, 16, 25]
plt.plot(x_value_list, squares, linewidth=5)
# 设置图标的标题,并给坐标轴加上标签
plt.title("Square", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show()
# 绘制散点图
- 在指定的xy坐标绘制一个点:
scatter(x,y)
import matplotlib.pyplot as plt
x_list = list(range(101))
y_list = [x ** 2 for x in x_list]
plt.scatter(x_list, y_list, c='red', edgecolors='green', s=10)
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
plt.tick_params(axis='both', which='major', labelsize=14)
# 横纵坐标的范围
plt.axis([0, 100, 0, 11000])
# 展示图片
# plt.show()
# 保存图片到文件
plt.savefig('s.png', bbox_inches='tight')
# 模拟随机漫步(散点图)
- 生成随机x,y坐标点位
random_walk.py
from random import choice
class RandomWalk:
def __init__(self, num_points=5000):
self.num_points = num_points
self.x_values = [0]
self.y_values = [0]
def fill_walk(self):
while len(self.x_values) < self.num_points:
x_direction = choice([1, -1])
x_distance = choice([0, 1, 2, 3, 4])
x_step = x_direction * x_distance
y_direction = choice([1, -1])
y_distance = choice([0, 1, 2, 3, 4])
y_step = y_direction * y_distance
if x_step == 0 and y_step == 0:
continue
next_x = self.x_values[-1] + x_step
next_y = self.y_values[-1] + y_step
self.x_values.append(next_x)
self.y_values.append(next_y)
- 根据生成的随机点位绘图
rw_visual.py
import matplotlib.pyplot as plt
from data_show.walk.random_walk import RandomWalk
while True:
rw = RandomWalk()
rw.fill_walk()
plt.scatter(rw.x_values, rw.y_values, s=15)
plt.show()
con_str = input("continue(y/n)?\n")
if con_str == 'y':
continue
else:
break
-
结果
# 使用Pygal
绘制矢量图
-
安装
pip install --user pygal==1.7
需求描述:掷一个点数为1-6的六面骰子,掷1000次,统计每个点数出现的次数,并将统计结果绘制成柱状svg图
from random import randint
import pygal
class Die:
"""骰子"""
def __init__(self, num_sides=6):
"""
初始化方法
:param num_sides: 骰子的面数
"""
self.num_sides = num_sides
def roll(self):
"""
掷骰子,Return random integer in range [a, b], including both end points.
:return:
"""
return randint(1, self.num_sides)
def draw(data_dict: dict):
"""
绘图
:param data_dict:
:return:
"""
hist = pygal.Bar()
hist.title = "投掷1000次6面筛子的结果统计"
hist.x_labels = data_dict.keys()
hist.x_title = "点数"
hist.y_title = "点数对应的次数"
hist.add('6面骰子', data_dict.values())
# 导出问文件,扩展名必须为`.svg`
hist.render_to_file('die_visual.svg')
die = Die()
result_list = []
# 掷骰子并保存结果
for i in range(1000):
result_list.append(die.roll())
# 点数:出现次数
point_count_dict = {}
# 分析每个点数出现的次数
for i in range(1, die.num_sides + 1):
point_count_dict[i] = result_list.count(i)
# 绘图
draw(point_count_dict)
-
结果:(使用浏览器打开svg文件)
-
各个点数出现的概率基本随机且相近
-
需求:同时投掷两个6面骰子,统计两个骰子的结果之和
from random import randint
import pygal
class Die:
"""骰子"""
def __init__(self, num_sides=6):
"""
初始化方法
:param num_sides: 骰子的面数
"""
self.num_sides = num_sides
def roll(self):
"""
掷骰子,Return random integer in range [a, b], including both end points.
:return:
"""
return randint(1, self.num_sides)
def draw(data_dict: dict):
"""
绘图
:param data_dict:
:return:
"""
hist = pygal.Bar()
hist.title = "投掷两个1000次6面筛子的结果统计"
hist.x_labels = data_dict.keys()
hist.x_title = "两个骰子的点数之和"
hist.y_title = "点数对应的次数"
hist.add('两个6面骰子', data_dict.values())
# 导出问文件,扩展名必须为`.svg`
hist.render_to_file('die_visual.svg')
die1 = Die()
die2 = Die()
result_list = []
# 掷骰子并保存结果
for i in range(1000):
result_list.append(die1.roll() + die2.roll())
# 点数:出现次数
point_count_dict = {}
# 分析每个点数出现的次数
for i in range(2, 2 * die1.num_sides + 1):
point_count_dict[i] = result_list.count(i)
# 绘图
draw(point_count_dict)
- 结果
-
出现点数之和为7的概率永远是最高的,因为7的组合方式最多~
-