Content
- Two Methods of Modeling
- Force balance
- Energy methods
- Energy Methods
- Conservative system
- Energy Conservation Method
- Lagrange's Method
- Reference
- Log
Concepts
- Modeling
- Newton's 2nd Law
- Euler's 2nd Law
- Conservative system
- Lagrange's Method
1. Two Methods of Modeling
如何得到系统的响应,我们需要建立系统的运动微分方程。在这个过程中,我们需要建模(Modeling)。
Modeling is the art or process of writing down an equation, or system of equations, to describe the motion of a physical device.[1]
这里,建模方法介绍两类:
- Force balance: Newton's Second Law + Euler's 2nd Law
- Energy methods
如上图中的弹簧质量系统,可通过Newton's Second Law (牛顿第二运动定律) 得到其运动微分方程。当然这个系统是 Conservative System。
Newton's Second Law
Newton’s second law states: the sum of forces acting on a body is equal to the body’s
mass times its acceleration.[1]
即 F = ma.
在一些旋转系统中,可以使用 Euler's Second Law。
Euler’s second law states: the rate of change of angular momentum is equal to the sum of external moments acting on the mass.[1]
即 ∑M = Jα. M为力矩, J 是转动惯量,α是角加速度。
在Free Vibration - 简书 和 Harmonic Motion - 简书 中基本就是使用 Force Balance 建模。
对于保守系统,我们还可以使用 Energy Methods.
2. Energy Methods
- Energy Conservation Method
- Lagrange's Method
Energy Conservation Method
Conservative System
保守系统: 系统动能和势能守恒,动能和势能相互转换,中间无能量消耗,当然这是最理想的系统,现实可没有这么理想,总是有能量损耗。不过先从简单,再到复杂,易于理解。
Energy Conservative System, 我们可以通过 Energy Conservation Method 建模。
** the principel of energy conservation**
the sum of the potential energy and kinetic energy of a particle remains constant at
each instant of time throughout the particle’s motion:
T + U = constant
U1 - U2 = T2 - T1
T_max = U_max
其他 T 是动能符号,U是势能符号。保守系统中,T 和 U 总能量守恒,系统没有能量损耗。 U1 和 T1 是 t1 时刻的势能和动能,U2 和 T2 是 t2 时刻的势能和动能.
The energy method can be used in two ways.
- 根据 T + U = constant,两边求 时间 t 求导 可以得到系统运动微分方程。
- 根据 T_max = U_max, 再利用系统 位移、速度和加速度的关系,就可以求解系统的Natural Frequency(固有频率)。这条路只限于求解保守系统固有频率。
Lagrange's Method
Lagrange’s method for conservative systems consists of defining the Lagrangian, L, of the system defined by L = T - U. Here T is the total kinetic energy of the system and U is the total potential energy in the system, both stated in terms of “generalized” coordinates.
哪里都能见到欧拉和拉格朗日啊!!!
拉格朗日方法其实也简单,就是使用一些方法来求系统的运动微分方程。不过该方法也只能用于保守系统中。
最后列出一张表[1], 对比一下直线运动系统和旋转系统。
Reference
[1] Inman D J, Singh R C. Engineering vibration[M]. Upper Saddle River: Prentice Hall, 2014.
Log
@安然Anifacc
2017-01-07 11:30:42