机器学习系列(六)最小二乘法

姓名:黄永飞;学号:17040520006;学院:机电工程学院;

转自:

https://www.jianshu.com/p/506baf37c540

【嵌牛导读】机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。在机器学习中,最小二乘法有有着巨大的用途。下面将从线性代数和概率论统计两个角度去分析和解释最小二乘法

【嵌牛鼻子】最小二乘法  空间解析几何 空间向量

【嵌牛提问】什么是空间向量?什么是最小二乘法?

1 线性代数

1.1 空间解析几何的相关定义

向量:在空间几何中,称既有大小又有方向的量为向量,也叫作几何(三维)向量。

n维向量:n个数组成的有序数组(a1,a2,···,an)成为n维向量,这n个数称为该向量的n个分量,第i个数ai,第i个数ai称为第i个分量。n维向量简称为向量,一般用小写希腊字母如α,β,γ,···表示向量,小写英文字母ai,bi,ci(i=1,2,···,n)表示向量的分量。

n维向量空间

向量的线性运算满足下面的运算规律:

所有以实数为分量的n维向量的集合,若在其中定义了向量的加法与数乘两种运算,且满足上述八条运算律,则称该向量集合为实数集R上的n维向量空间,记为Rn

1.2 最小二乘法

在定义了內积的n维向量空间Rn(成为欧式空间或内积空间)中,定义两个向量α和β的距离等于α-β的长度,记为d(α,β)=|α-β|,而且这样的距离满足三条基本性质:

d(α,β)=d(β,α)

d(α,β)≥0,当且仅当α=β时等号成立

d(α,β)≤d(α,γ)+d(γ,β)

设W是Rn的一个子空间,它是由α1,α2,···,αs生成的,设W=L(α1,α2,···,αs).假设Rn中的一个向量β垂直于子空间W,就是指β垂直于W中的任何一个向量。回忆我们中学几何,我们学过一个点到一个平面或一条直线上的垂直距离最短,同样,在向量空间Rn*中,一个向量与某个子空间中各向量间的距离以“垂线”为最短。

最小二乘问题我们知道实系数线性方程组:

可能无解,记为(5.4.1)式,也就是任何一组实数x1,x2,x2,···,xs,都可能使:

不等于零,记为(5.4.2)式我们设法找x′1,x′2,···,x′s,使得上式最小,用它作为线性方程组的近似解,这样的x′1,x′2,···,x′s成为方程组的最小二乘解,这种问题叫作最小二乘问题

下面利用欧式空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件。令:

应用空间距离的概念,(5.4.2)式可写为|Y-B|2,最小二乘法就是找x′1,x′2,···,x′s,使Y与B的距离|Y-B|为最短,Y可以表示成A的列向量的线性组合:

把A的各列向量记为α1,α2,···,αs,并设W=L(α1,α2,···,αs),则Y∈W。

因此,为了找X使(5.4.2)式最小,即|Y-B|2最小,就是要在W=L(α1,α2,···,αs)中找到一个向量Y,使得BY的距离|Y-B|比BW中其他向量的距离都短。

应用前面的讨论,如果Y=x1α1+x2α2+···+xsαs就是所求的向量,那么C=B-Y=B-AX必垂直于子空间W,那么C垂直于子空间W的充要条件是(α1,C)=(α2,C)=···=(αs,C)=0,可写成:

因此由上式可得ATC=0,即AT(B-AX)=0,或ATAX=ATB,这就是最小二乘解所满足的线性方程组,它的系数矩阵是ATA,常数项是Asup</>B.

1.2 实例

1.3 最小二乘直线

变量x和y之间最简单的关系是线性方程y=β0+β1x,实验中数据常给出点列(x1,y1),(x2,y2),···,(xn,yn),而它们的图形近似于直线,我们希望确定参数β0和β1,使得直线尽可能“接近”这些点。

假若β0和β1固定,考虑直线y=β0+β1x,对应于每个数据点(xi,yi),相同的x坐标下,直线上的点列为(xj,β0+β1xj),我们称yi为y的观测值,β0+β1xj为y的预测值(由直线而定),观测值和预测值的差称为余差。

如果数据点在直线上,参数β0和β1满足方程:

我们可以将上述方程写成:

当然,如果数据点不在直线上,就没有参数β0和β1使得Xβ中的预测值与观测值相等,因而Xβ=y没有解,这就是Ax=b的最小二乘解问题,只是换了种说法。

向量Xβ与y的距离的平方精确表达为余差的平方和,于是使平方和最小的β同样使y的距离最小,计算Xβ=y的最下二乘问题等价于找出β,它确定的图就是最小二乘直线。

1.4 最小二乘直线实例

作者:致Great

链接:https://www.jianshu.com/p/506baf37c540

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容