Paper Summary 2: Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

0 Paper

Rakhlin A, Shamir O, Sridharan K. Making gradient descent optimal for strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647. 2011 Sep 26.

1 Key contribution

The paper proved the followings regarding the convergence rate of stochastic gradient descent (SGD)

  1. For smooth & strongly convex problems, SGD attains \mathcal{O}(1/T) convergence rate
  2. For strongly convex problems, SGD with averaging has a lower bound \Omega(log(T)/T)
  3. For non-smooth & strongly convex problems, SGD with \alpha-suffix averaging can recover the \mathcal{O}(1/T) rate both in expectation and high probability.

2 Preliminary knowledge

  1. Problem statement
    Given some convex domain W and an unknown convex function F, using SGD to update w_t \in W so as to find the optimal solution w^* \in W, and then the goal is to provide bounds on F(w_t) - F(W^*) either in expectation or in high probability.

  2. \lambda- strongly \ convex
    F is \lambda- strongly \ convex if for all w, \ w' \in W and any subgradient g of F at w,
    F(w') \geq F(w) + \left \langle g, \ w' - w \right \rangle + \frac{\lambda}{2} \| w'-w \|^2

  3. \mu-smooth \ w.r.t \ w^*
    F(w)- F(w^*) \geq \frac{\mu}{2} \| w-w^* \|^2

  4. SGD
    At each step, SGD produces \hat{g_t} such that \mathbb{E}[\hat{g_t}]=g_t is a subgradient of F at w_t. Then, update w_t as follows.
    w_{t+1} \leftarrow \Pi_W(w_t - \eta_t \hat{g_t} )
    where, \Pi_W is the projection on W and \eta_t is the learning rate.

  5. \alpha-suffix averaging
    \hat{w}_{\alpha}^{T} = \frac{w_{(1-\alpha) T + 1} + ... + w_T}{\alpha T}

3 Main analysis

1) Smooth functions

\textbf{Theorem 1} suppose F is \lambda - strongly \ convex and \mu - smooth w.r.t. w^* over a convex set W, and \mathbb{E}[\| \hat{g_t} \|^2] \leq G^2. Then if let \eta_t = c / (\lambda t) for some constant c > 1/2, it holds for any T that
\mathbb{E}[F(w_T) - F(w^*)] \leq \frac{1}{2} \max \left \{ 4, \frac{c}{2-1/c} \right \} \frac{\mu G^2}{\lambda^2 T}

\textbf{Lemma 1} suppose F is \lambda - strongly \ convex and \mu - smooth w.r.t. w^* over a convex set W, and \mathbb{E}[\| \hat{g_t} \|^2] \leq G^2. Then if let \eta_t = c / (\lambda t) for some constant c > 1/2, it holds for any T that
\mathbb{E}[ \| w_T - w^* \|^2] \leq \frac{1}{2} \max \left \{ 4, \frac{c}{2-1/c} \right \} \frac{ G^2}{\lambda^2 T}

\textbf{Theorem 2} suppose F is \lambda - strongly \ convex and \mu - smooth w.r.t. w^* over a convex set W, \hat{w_T} is the average of \{w_t\}_{t=1}^{T} , and \mathbb{E}[\| \hat{g_t} \|^2] \leq G^2. Then if let \eta_t = c / (\lambda t) for some constant c > 1/2, it holds for any T that
\mathbb{E}[F(\hat{w_T})- F(w^*)] \leq \frac{2}{T} \max \left \{ \frac{\mu G^2}{\lambda^2}, \frac{ 4 \mu G}{\lambda}, \frac{ \mu G}{\lambda} \sqrt{\frac{ 4c}{2-1/c}} \right \}

2) Non-smooth functions

\textbf{Theorem 3} shows that when the global optimum lies at the corner of W, leading SGD to approaches the optimal from one direction, the convergence rate of SGD with averaging is \Omega(\log(T) / T).

\textbf{Theorem 4} shows that even when the global optimum lies in the interior of W, as long as SGD approaches the optimum only from one direction, the convergence rate of SGD with averaging is still \Omega(\log(T) / T).

3) SGD with \alpha-suffix averaging

\textbf{Theorem 5} Consider SGD with \alpha-suffix averaging, and with step size \\eta_t = c / (\lambda t) where c > 1/2 is a constant. Suppose F is \lambda-strongly \ convex and that\mathbb{E}[\| \hat{g_t} \|^2] \leq G for all t. Then for any T, it holds that
\mathbb{E}[F(\hat{w}_{\alpha}^{T})- F(w^*)] \leq \frac{\left ( c' + (\frac{c}{2} + c') \log (\frac{1}{1-\alpha}) \right )}{\alpha} \frac{G^2}{\lambda T}
where c' = \max \left \{ \frac{2}{c}, \frac{1}{4-2/c} \right \}

4) High probability bounds

\textbf{Lemma 2} Let \delta in (0, 1/e) and T \leq 4. Suppose F is \lambda-strongly \ convex over a convex set W, and that \mathbb{E}[\| \hat{g_t} \|^2] \leq G^2 with probalility 1. Then if we pick \eta_t = c/ (\lambda t) for some constant c > 1/2, such that 2c is a whole number, it holds with probability at least 1-\delta that for any t \in {4c^2 + 4c, ..., T-1, T} that
\| w_t - w^* \|^2 \leq \frac{12c^2 G^2}{\lambda^2 t} + 8(121G + 1) G \frac{c \log (\log (t) / \delta)}{\lambda t}

3 Some thoughts about innovation and writing

1) Innovation:

  1. Extend something already known to some unknown areas
  2. Talk about some special but important cases
  3. Establish theoretical analysis for some phenomenon
  4. Apply theoretical results to real applications

2) Writing:

  1. The title should be better if it is less than 10 words. Make it more concise and interesting!
  2. In the introduction, start with a general topic and narrow it down to the key topic of the paper step by step. Transitions could be made by saying, e.g., ”An important special case…”, “One of the … is that ”. Remember, tell a good story!
  3. Regarding literature review, include only the latest papers may be enough. Clarify the difference of your paper and other related works.
  4. Claim and list the specific contributions of the paper. Even though you may say something about what are your innovations, list them in details any way so that readers are able to know your exact contributions.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容