AB测试(ABtest)

什么是AB测试?

为同一个目标,设计两种方案,将两种方案随机投放市场中,让组成成分相同(相似)用户去随机体验两种方案之一,根据观测结果,判断哪个方案效果更好,结果可以通过CTR或者下单率来衡量。

判断效果,需要知道的数据?

两个样本数量 NA,NB,转化率/下单率,PA,PB

怎么衡量AB测试的效果?(一种方案比另一种方案更有效)

由于AB测试是让用户在两个选择中随机选择一项,相当于二项分布,根据统计学原理,可知若样本足够大,那么标准的二项分布的累计分布趋近于正态分布,即抽样的分布趋于正态分布,可采用z检验。

即PA~N(PA,PA*(1-PA)/NA) 

PB~N(PB,PB*(1-PB)/NB)

PA-PA~N(PA-PB,PA*(1-PA)/NA+PB*(1-PB)/NB)

AB-test的假设检验:

H0:A、B无差异

H1:A、B有显著差异

根据样本观察值,构造统计量:

若Z>Z0.025 ,那么拒绝原假设,认为两种方案有显著差异。


样本的可信性

两类错误:

第一类错误α错误:“弃真”,原假设为真,却落在拒绝域内。

第二类错误β错误:“取伪”,原假设为假,却接受原假设。


统计功效power

在上文中我们使用的是样本的估计值代表整体,但是可能存在偏差,即可能存在两类错误,如何去估计样本是否能代表真实,统计学中使用统计功效来衡量。

统计功效:在假设检验中,拒绝原假设后接受备择假设的概率,计算的是(1-β)的概率。统计功效的值期望越大越好。



做ABtest时需要考虑的问题?

1.样本是否具有代表性,首先在样本的选取中就需要先行进行控制;

2.估计值是否是实际值的真实反映?即估计的准确性。

3.如果样本有偏差,考虑区间估计

4.怎么分配流量来做多组测试?---根据统计功效计算

方差分析

方差分析(analysis of variance,ANOVA),即变量分析,是对多个样本平均数差异显著性检验的方法。方差分析又称为F检验。

分差分析的总体思想就是数据中的总变异,按变异原因划分。

变异的基本来源有两个:

*实验变量:样本的观测因素引起的变异,也称为组间差异

*随机误差:由于测量误差导致的每个个体间的差异,也称为组内差异

总偏差平方和=组间偏差平方和+组内偏差平方和 SST=SSR+SSE

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343