import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
#命名空间
with tf.name_scope("input"):
#定义输入输出
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope("layer"):
#创建一个简单的神经网络
with tf.name_scope('weights'):
W = tf.Variable(tf.zeros([784, 10]))
variable_summaries(W)
with tf.name_scope('bias'):
b = tf.Variable(tf.zeros([1, 10]))
variable_summaries(b)
with tf.name_scope('predictions'):
predictions_1 = tf.matmul(x, W) + b
#定义二次代价函数
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=predictions_1))
tf.summary.scalar('loss', loss)
#使用梯度下降
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果存放在一个bool型列表中
with tf.name_scope('acc'):
with tf.name_scope('correction'):
correction = tf.equal(tf.argmax(y, 1), tf.argmax(predictions_1, 1))#argmax返回一维张量中最大的值所在的位置
#求准确率
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
#合并所有的summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/', sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys})
writer.add_summary(summary, epoch)
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("epoch " + str(epoch) + ", accuracy " + str(acc))
5.3 tensorflow学习与应用——Tensorboard网络运行
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- MNIST 卷积神经网络。https://github.com/nlintz/TensorFlow-Tutoria...
- 参考:https://www.cnblogs.com/georgeli/p/8470745.html