312. Burst Balloons

Description

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and rightare adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Given [3, 1, 5, 8]

Return 167

nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3 * 1 * 5 + 3 * 5 * 8 + 1 * 3 * 8 + 1 * 8 * 1 = 167

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.

Solution

Divide and Conquer, time O(n ^ 3), space O(n ^ 2)

脑洞大开的一道题,正着不行反着想。

Be Naive First

When I first get this problem, it is far from dynamic programming to me. I started with the most naive idea the backtracking.

We have n balloons to burst, which mean we have n steps in the game. In the i th step we have n-i balloons to burst, i = 0~n-1. Therefore we are looking at an algorithm of O(n!). Well, it is slow, probably works for n < 12 only.

Of course this is not the point to implement it. We need to identify the redundant works we did in it and try to optimize.

Well, we can find that for any balloons left the maxCoins does not depends on the balloons already bursted. This indicate that we can use memorization (top down) or dynamic programming (bottom up) for all the cases from small numbers of balloon until n balloons. How many cases are there? For k balloons there are C(n, k) cases and for each case it need to scan the k balloons to compare. The sum is quite big still. It is better than O(n!) but worse than O(2^n).

Better idea

We then think can we apply the divide and conquer technique? After all there seems to be many self similar sub problems from the previous analysis.

Well, the nature way to divide the problem is burst one balloon and separate the balloons into 2 sub sections one on the left and one one the right. However, in this problem the left and right become adjacent and have effects on the maxCoins in the future.

Then another interesting idea come up. Which is quite often seen in dp problem analysis. That is reverse thinking. Like I said the coins you get for a balloon does not depend on the balloons already burst. Therefore instead of divide the problem by the first balloon to burst, we divide the problem by the last balloon to burst.

Why is that? Because only the first and last balloons we are sure of their adjacent balloons before hand!

For the first we have nums[i-1]nums[i]nums[i+1] for the last we have nums[-1]nums[i]nums[n].

OK. Think about n balloons if i is the last one to burst, what now?

We can see that the balloons is again separated into 2 sections. But this time since the balloon i is the last balloon of all to burst, the left and right section now has well defined boundary and do not affect each other! Therefore we can do either recursive method with memoization or dp.

Final

Here comes the final solutions. Note that we put 2 balloons with 1 as boundaries and also burst all the zero balloons in the first round since they won’t give any coins.
The algorithm runs in O(n^3) which can be easily seen from the 3 loops in dp solution.

class Solution {
    public int maxCoins(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int n = 1;
        int[] positiveNums= new int[nums.length + 2];
        for (int x : nums) {
            if (x == 0) {   // remove zeros from nums because it doesn't earn coins
                continue;
            }
            positiveNums[n++] = x;
        }
        
        positiveNums[0] = 1;
        positiveNums[n++] = 1;
        
        int[][] maxCoins = new int[n][n];
        return maxCoinsRecur(positiveNums, 0, n - 1, maxCoins);
    }
    
    // left and right are non-exclusive boundries
    public int maxCoinsRecur(int[] nums, int left, int right, int[][] maxCoins) {
        if (left + 1 == right) {
            return 0;
        }
        
        if (maxCoins[left][right] > 0) {
            return maxCoins[left][right];
        }
        
        for (int i = left + 1; i < right; ++i) {
            int coins = nums[left] * nums[i] * nums[right] 
                + maxCoinsRecur(nums, left, i, maxCoins)
                + maxCoinsRecur(nums, i, right, maxCoins);
            maxCoins[left][right] = Math.max(maxCoins[left][right], coins);
        }
        
        return  maxCoins[left][right];
    } 
}

DP, time O(n ^ 3), space O(n ^ 2)

根据上面的思路,可以将其轻松转换成DP。需要注意的是DP计算的顺序,由于可能依赖中间的计算结果,DP需要按照步长有小到大计算,才能保证子问题已经被处理过。

class Solution {
    public int maxCoins(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int n = 1;
        int[] positiveNums= new int[nums.length + 2];
        for (int x : nums) {
            if (x == 0) {   // remove zeros from nums because it doesn't earn coins
                continue;
            }
            positiveNums[n++] = x;
        }
        
        positiveNums[0] = 1;
        positiveNums[n++] = 1;
        
        int[][] maxCoins = new int[n][n];
        
        for (int step = 2; step < n; ++step) {
            for (int left = 0; left < n - step; ++left) {
                int right = left + step;
                for (int i = left + 1; i < right; ++i) {
                    int coins = positiveNums[i] * positiveNums[left] * positiveNums[right]
                        + maxCoins[left][i] + maxCoins[i][right];
                    maxCoins[left][right] = Math.max(maxCoins[left][right], coins);
                }
            }
        }
        
        return maxCoins[0][n - 1];
    } 
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容