scrapy分布式爬虫部署-- 爬取知乎用户为例

环境简介:
Ubuntu 环境下 使用MongoDB将数据保存到本地,利用redis-server实现分布式部署
使用scrapy框架爬去知乎用户的信息。

  1. 安装MongoDB
    sudo apt-get install mongodb
    2.安装redis
    sudo apt-get install redis-server
    3.安装scarpy
    sudo apt-get install scrapy

创建爬虫项目:
scrapy startproject zhihu
cd zhihu
创建爬虫文件:
scarpy genspider zhihu www.zhihu.com

代码简析:
zhihu.py爬虫

# -*- coding: utf-8 -*-
import json

from scrapy import Request, Spider

from ..items import UserItem


class ZhihuSpider(Spider):
    name = 'zhihu'
    allowed_domains = ['www.zhihu.com']
    start_urls = ['http://www.zhihu.com/']

    start_user = 'excited-vczh'

    # 用户信息
    user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
    user_query = 'allow_message,is_followed,is_following,is_org,is_blocking,employments,answer_count,follower_count,articles_count,gender,badge[?(type=best_answerer)].topics'

    # 关注列表
    followees_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset=0&limit=20'
    followees_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'

    # 粉丝列表
    followers_url = 'https://www.zhihu.com/api/v4/members/{user}/followers?include={include}&offset=0&limit=20'
    followers_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'

    def start_requests(self):
        yield Request(self.user_url.format(user=self.start_user, include=self.user_query), self.parse_user)
        yield Request(self.followees_url.format(user=self.start_user, include=self.followees_query, offset=0, limit=20),
                      callback=self.parse_followees)
        yield Request(self.followees_url.format(user=self.start_user, include=self.followees_query, offset=0, limit=20),
                      callback=self.parse_followers)

    def parse_user(self, response):
        result = json.loads(response.text)
        item = UserItem()
        for field in item.fields:
            if field in result.keys():
                item[field] = result.get(field)
        yield item
        yield Request(
            self.followees_url.format(user=result.get('url_token'), include=self.followees_query, offset=0, limit=20),
            callback=self.parse_followees)
        yield Request(
            self.followees_url.format(user=result.get('url_token'), include=self.followees_query, offset=0, limit=20),
            callback=self.parse_followers)

    # 解析关注列表
    def parse_followees(self, response):
        results = json.loads(response.text)

        if 'data' in results.keys():
            for result in results.get('data'):
                yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
                              self.parse_user)

        if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
            next_page = results.get('paging').get('next')
            yield Request(next_page, self.parse_followees)

    # 解析粉丝列表
    def parse_followers(self, response):
        results = json.loads(response.text)

        if 'data' in results.keys():
            for result in results.get('data'):
                yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
                              self.parse_user)

        if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
            next_page = results.get('paging').get('next')
            yield Request(next_page, self.parse_followers)

pipellines.py 管线文件

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html


import pymongo


class ZhihuPipeline(object):
    def process_item(self, item, spider):
        return item


class MongoPipeline(object):
    def __init__(self):
        host = 'localhost'
        port = 27017
        dbname = 'Zhihu'
        sheetname = 'zhihu_user'
        # 创建MONGODB数据库链接
        client = pymongo.MongoClient(host=host, port=port)
        # 指定数据库
        mydb = client[dbname]
        # 存放数据的数据库表名
        self.post = mydb[sheetname]

    def process_item(self, item, spider):
        # 使用update方法 进行去重处理
        self.post.update({'url_token': item['url_token']}, {'$set': item}, True)
        return item

item.py 爬取数据的保存格式

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

from scrapy import Item, Field


class UserItem(Item):
    id = Field()
    name = Field()
    avatar_url = Field()
    headline = Field()
    description = Field()
    url = Field()
    url_token = Field()
    gender = Field()
    cover_url = Field()
    type = Field()
    Badge = Field()

    answer_count = Field()
    articles_count = Field()
    commercial_question_count = Field()
    favorite_count = Field()
    follower_count = Field()
    following_columns_count = Field()
    following_count = Field()
    pins_count = Field()
    question_count = Field()
    thank_from_count = Field()
    thank_to_count = Field()
    vote_from_count = Field()
    vote_to_count = Field()
    voteup_count = Field()
    following_favlists_count = Field()
    following_question_count = Field()
    following_topic_count = Field()
    marked_ansers_count = Field()
    mutual_followees_count = Field()
    hosted_live_count = Field()
    participated_live_count = Field()

settings.py scrapy配置文件

# -*- coding: utf-8 -*-

# Scrapy settings for zhihu project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'zhihu'

SPIDER_MODULES = ['zhihu.spiders']
NEWSPIDER_MODULE = 'zhihu.spiders'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
# USER_AGENT = 'zhihu (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
# CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
# CONCURRENT_REQUESTS_PER_DOMAIN = 16
# CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
# COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
# TELNETCONSOLE_ENABLED = False

# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'en',
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36',
    'authorization': 'oauth c3cef7c66a1843f8b3a9e6a1e3160e20'
}

# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
# SPIDER_MIDDLEWARES = {
#    'zhihu.middlewares.ZhihuSpiderMiddleware': 543,
# }

# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
#    'zhihu.middlewares.MyCustomDownloaderMiddleware': 543,
# }

# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
# }

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'zhihu.pipelines.MongoPipeline': 300,#将本地存储的管线打开
    #'scrapy_redis.pipelines.RedisPipeline': 301#不注释将会把爬到的数据上传到Master端,会消耗新能,一般情况下,Master只保存连接指纹,数据又本地储存
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
# AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
# HTTPCACHE_ENABLED = True
# HTTPCACHE_EXPIRATION_SECS = 0
# HTTPCACHE_DIR = 'httpcache'
# HTTPCACHE_IGNORE_HTTP_CODES = []
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

# 调度表使用scrapy_redis的调度表
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler"

#去重使用scrapy_redis的去重文件
# Ensure all spiders share same duplicates filter through redis.
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

#指定redis的url地址
REDIS_URL = 'redis://user:password@hostname:port'

github:https://github.com/a331363549/Spider_Zhihu

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容

  • 太长了,还是转载吧...今天在看博客的时候,无意中发现了@Trinea在GitHub上的一个项目Android开源...
    庞哈哈哈12138阅读 20,180评论 3 283
  • 作为周星驰的铁粉,昨晚重看他拍的美人鱼,整场下来依然笑声不断,当电影结束后,这次我眼含热泪,感动我的不是这...
    天蓬O帅阅读 329评论 0 0
  • 关键字:170607、周三、濮阳、晴 淘淘时有吐奶,清晨又是腹泄;小何不长记性总不带束腰带,抱孩子喂奶时不经意间会...
    二石兄阅读 555评论 0 1
  • 关于需求的提出,更多的其实是在分类,将一类事物从整体中提出,并赋予其新的定义。在此基础上完成对用户群的梳理。依赖不...
    养过小龙女阅读 330评论 0 0
  • 文/北芊 1 天台巧遇 罗奕从未料到,能在这座南方的城市里又遇见童悠悠,这个曾短暂陪她走过一段路的旧友,她甚至快忘...
    北芊阅读 922评论 3 4