[toc]
Redis
redis数据结构有哪些
string
使用string时,redis大多数情况下并不会理解或者解析其含义,无论使用json、xml还是纯文本在redis看来都是一样的,只是一个字符串,只能进行strlen、append等对字符串通用的操作,无法针对其内容进一步操作。其基本操作命令有set、get、strlen、getrange、append,在大多数情况之外,就是string中存储的为纯数字的情况,redis可以将字符串当做数字进行进一步操作,这些操作包括decr、decrby、incr、incrby和incrbyfloat。
hash
使用hash时,在我看来,就是value本身就是一组key-value对,不过redis将这里的key称为field(但是hkeys命令为什么不叫hfields命令呢哈哈),也就是value是一组field-value对。其基本操作命令有hset、hget、hmset、hmget、hgetall、hkeys和hdel:
list
使用list时,value就是一个string数组,操作这组string时,可以像对待栈一样使用pop和push操作,但是这个栈两端都能进行操作;也可以像对待数组一样使用一个index参数来操作。
set
set用于存储一组不重复的值,也可以进行一些集合的操作,就像数学上的集合,它是无序的。
sorted set
sorted set类似set,但是sorted set里每个元素都有一个score,这个score可用于排序和排名。
redis队列应用场景
redis和Memcached(支持数据持久化)
(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
(2) redis的速度比memcached快很多
(3) redis可以持久化其数据
分布式使用场景(储存session等)
生产/消费使用场景
一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听。
发布/订阅使用场景
一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。
解决超卖的问题
- 使用unsigned来制止负数的产生
- 使用事务,锁住操作的行
- 使用非阻塞的文件排它锁
- 使用Redis队列,因为pop()操作的原子的,即使有很多用户同时到达,也是依次执行
Reids的特点
Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。
Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存多种数据结构,此外单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性 能消息队列服务,用他的Set可以做高性能的tag系统等等。另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一 个功能加强版的memcached来用。
Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
为什么redis需要把所有数据放到内存中?
Redis为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以redis具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘I/O速度为严重影响redis的性能。在内存越来越便宜的今天,redis将会越来越受欢迎。
如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。
Redis是单进程单线程的
redis利用队列技术将并发访问变为串行访问,消除了传统数据库串行控制的开销
虚拟内存
当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.
当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.
vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.
自己测试的时候发现用虚拟内存性能也不错。如果数据量很大,可以考虑分布式或者其他数据库
分布式
redis支持主从的模式。原则:Master会将数据同步到slave,而slave不会将数据同步到master。Slave启动时会连接master来同步数据。
这是一个典型的分布式读写分离模型。我们可以利用master来插入数据,slave提供检索服务。这样可以有效减少单个机器的并发访问数量
读写分离模型
通过增加Slave DB的数量,读的性能可以线性增长。为了避免Master DB的单点故障,集群一般都会采用两台Master DB做双机热备,所以整个集群的读和写的可用性都非常高。
读写分离架构的缺陷在于,不管是Master还是Slave,每个节点都必须保存完整的数据,如果在数据量很大的情况下,集群的扩展能力还是受限于单个节点的存储能力,而且对于Write-intensive类型的应用,读写分离架构并不适合。
数据分片模型
为了解决读写分离模型的缺陷,可以将数据分片模型应用进来。
可以将每个节点看成都是独立的master,然后通过业务实现数据分片。
结合上面两种模型,可以将每个master设计成由一个master和多个slave组成的模型。
Redis的回收策略
volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
redis常见性能问题和解决方案:
(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库
(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。