SVM: Support Vector Machine | 支持向量机

《hands on machine learning with scikit-learn and tensorflow》

支持向量机的作用

在两个类之间找到最宽的一条大道将其分开
SVM适用于复杂、中小规模的数据集上。

from sklearn.svm import LinearSVC,SVC #LinearSVC(C=1, loss="hinge") 比 SVC(kernel="linear", C=1)快

支持向量的含义

支持向量就是street(两条虚线之间,包含虚线)内的数据点,这些点决定了street的宽度。

数据的标准化与中心化

SVMs try to fit the largest possible “street” between the classes (see the first answer), so if the training set is not scaled, the SVM will tend to neglect small features
数据的标准化与中心化使得各特征重要性相同,不至于忽略某些特征

软间隔与硬间隔

硬间隔:street上不能有数据点(因此对异常值非常敏感)
软间隔:street上可以有些许数据点

sklearn的svm模型(from sklearn.svm import *)通过 超参 C 来调控对margin violations(street上的点)的严格程度,C越大则控制越严格,street宽度也会越小

Fewer margin violations versus large margin

支持向量回归

与分类相反,希望数据点都在street内部

背后逻辑(简化版)

增加特征,使得维度变高,从而可以找到满足线性可分的平面 f(x) = Wx +b
接下来关键就是求出W,b,并控制好street的宽度


  • 能不能直接求出W,b带入运算

提问:什么样的W,b是最好的?
回答:W越小,间隔越大(如下图解释,w越小黑线越长)

W与间隔大小的关系

我们定义负样本的标签 t=-1,正样本 t=1,那么硬间隔求解W的方法如下:

硬间隔

为什么是>=1?这个和损失函数hinge有关。

软间隔

软间隔加了一个宽松度ζ,用参数C进行了控制。

看起来好像不错,求出w,b就能完成分类了。但是映射可能有问题,譬如可能特征维度爆炸。RBF高斯径向基函数就能通过泰勒展开将 x 映射到(x, x^2, x^3 ... x^n)无穷维度上去。

f(Φ(x)) = WΦ(x)+b,Φ(x)要是无穷维的话 f(Φ(x)) 没法算,所以就算求出W,b了也不行,这就要想办法解决这个高维乃至无穷维的问题了。

  • 核技巧

上面求W,b本来要用一个二次规划就行,然后二次规划求解问题可以用一个对偶问题求出一样的解。至于这个对偶问题咋找到的,我就不知道了。如下图:

约束条件
约束条件下的W,b解

这样也能解出W,b,还有新出现的α,利用这些接触的信息就能跳过Φ(x)而直接利用x求解了。

利用核技巧求解

可以看到上图最后一行公式,只涉及α,t,b,K(x1,x2)。

据说(我没算过),只有support vector的α≠0
我看这个公式:不需要先根据训练集求W,b,而是找到support vector,然后计算上面的公式就能知道h(Φ(x))是正是负了。这还是挺神奇的,没有映射不升到高维也能分类。‘’

不升到高维却能得到跟高维一样的结果
  • Hinge Loss,控制好street的宽度

分类用的实线(面)我们是找到了,但是间隔应该多宽我们还没调整好。

间隔应该多宽,考察的是我们对于那些边界点怎么算。
严格划分每个点?放过多少点可以留着间隔内?

这个就要用损失函数Hinge Loss来衡量了,max(0, 1-t*f(x))

Hinge Loss

提问:拐点必须是1?
回答:不是,可以其他。为啥?不清楚。
提问:Hinge Loss有啥好处
回答:容易求导

完整损失函数

如果将max(0, 1-t*f(x))记为ε,那么 在最小化的目标 下,下面第二个框中两者等价。

将max(0, 1-t*f(x))记为ε

于是乎,我就能理解上面的软间隔优化目标了。

软间隔

代码:SVM应用

# https://github.com/ageron/handson-ml/blob/master/05_support_vector_machines.ipynb
# 在加利福尼亚住宅(California housing)数据集上训练一个 SVM 回归模型
# Let's load the dataset using Scikit-Learn's fetch_california_housing() function:

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
X = housing["data"]
y = housing["target"]

# Split it into a training set and a test set:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Don't forget to scale the data:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Let's train a simple LinearSVR first:
from sklearn.svm import LinearSVR
lin_svr = LinearSVR(random_state=42)
lin_svr.fit(X_train_scaled, y_train)
# LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,
#     intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,
#     random_state=42, tol=0.0001, verbose=0)

# Let's see how it performs on the training set:
from sklearn.metrics import mean_squared_error
y_pred = lin_svr.predict(X_train_scaled)
mse = mean_squared_error(y_train, y_pred)
# mse = 0.949968822217229

from sklearn.svm import SVR
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import reciprocal, uniform

param_distributions = {"gamma": reciprocal(0.001, 0.1), "C": uniform(1, 10)}
rnd_search_cv = RandomizedSearchCV(SVR(), param_distributions, n_iter=10, verbose=2, random_state=42)
rnd_search_cv.fit(X_train_scaled, y_train)

#>>> rnd_search_cv.best_estimator_
#>>> SVR(C=4.745401188473625, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
#  gamma=0.07969454818643928, kernel='rbf', max_iter=-1, shrinking=True,
#  tol=0.001, verbose=False)

y_pred = rnd_search_cv.best_estimator_.predict(X_train_scaled)
mse = mean_squared_error(y_train, y_pred)

y_pred = rnd_search_cv.best_estimator_.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容