豆瓣电影数据可视化12-02

数据可视化

原始

# 可视化爬取结果
import requests
from bs4 import BeautifulSoup  # 从bs4引入BeautifulSoup
from pyecharts import Page, Pie, Bar  # 引入绘图需要的模块
 
#请求网页
url = "https://movie.douban.com/cinema/later/chengdu/"
response = requests.get(url)
 
soup = BeautifulSoup(response.content.decode('utf-8'), 'lxml')
 
all_movies = soup.find('div', id="showing-soon")  # 先找到最大的div
 
# 先把所有的数据存到这个list里面
all_movies_info = []
for each_movie in all_movies.find_all('div', class_="item"):  # 从最大的div里面找到影片的div
    # print(each_movie)  # 输出每个影片div的内容
    all_a_tag = each_movie.find_all('a')
    all_li_tag = each_movie.find_all('li')
    movie_name = all_a_tag[1].text
    moive_href = all_a_tag[1]['href']
    movie_date = all_li_tag[0].text
    movie_type = all_li_tag[1].text
    movie_area = all_li_tag[2].text
    movie_lovers = all_li_tag[3].text.replace('人想看', '') #  去掉除了数字之外的字
    # 把电影数据添加到list
    all_movies_info.append({'name': movie_name, 'date': movie_date, 'type': movie_type, 
                            'area': movie_area, 'lovers': movie_lovers})
    # print('名字:{},日期:{},类型:{},地区:{}, 关注者:{}'.format(
        # movie_name, movie_date, movie_type, movie_area, movie_lovers))
print(all_movies_info)  # 输出一下检查数据是否传递成功

关注者排行榜柱状图

# 可视化爬取结果
import requests
from bs4 import BeautifulSoup  # 从bs4引入BeautifulSoup
from pyecharts import Page, Pie, Bar  # 引入绘图需要的模块
 
#请求网页
url = "https://movie.douban.com/cinema/later/chengdu/"
response = requests.get(url)
 
soup = BeautifulSoup(response.content.decode('utf-8'), 'lxml')
 
all_movies = soup.find('div', id="showing-soon")  # 先找到最大的div
 
# 先把所有的数据存到这个list里面
all_movies_info = []
for each_movie in all_movies.find_all('div', class_="item"):  # 从最大的div里面找到影片的div
    # print(each_movie)  # 输出每个影片div的内容
    all_a_tag = each_movie.find_all('a')
    all_li_tag = each_movie.find_all('li')
    movie_name = all_a_tag[1].text
    moive_href = all_a_tag[1]['href']
    movie_date = all_li_tag[0].text
    movie_type = all_li_tag[1].text
    movie_area = all_li_tag[2].text
    movie_lovers = all_li_tag[3].text.replace('人想看', '') #  去掉除了数字之外的字
    # 把电影数据添加到list
    all_movies_info.append({'name': movie_name, 'date': movie_date, 'type': movie_type, 
                            'area': movie_area, 'lovers': movie_lovers})
    # print('名字:{},日期:{},类型:{},地区:{}, 关注者:{}'.format(
        # movie_name, movie_date, movie_type, movie_area, movie_lovers))
# 绘制关注者排行榜图
 
# i['name'] for i in all_movies_info 这个是Python的快捷方式,
# 这一句的作用是从all_movies_info这个list里面依次取出每个元素,
# 并且取出这个元素的 name 属性
sort_by_lovers = sorted(all_movies_info, key=lambda x: int(x['lovers']))
all_names = [i['name'] for i in sort_by_lovers]
all_lovers = [i['lovers'] for i in sort_by_lovers]
 
lovers_rank_bar = Bar('电影关注者排行榜')  # 初始化图表,给个名字
# all_names是所有电影名,作为X轴, all_lovers是关注者的数量,作为Y轴。二者数据一一对应。
# is_convert=True设置x、y轴对调,。is_label_show=True 显示y轴值。 label_pos='right' Y轴值显示在右边
lovers_rank_bar.add('', all_names, all_lovers, is_convert=True, is_label_show=True, label_pos='right')
lovers_rank_bar  # jupyter下直接显示图表在输出框内

电影类型占比图

# 可视化爬取结果
import requests
from bs4 import BeautifulSoup  # 从bs4引入BeautifulSoup
from pyecharts import Page, Pie, Bar  # 引入绘图需要的模块
 
#请求网页
url = "https://movie.douban.com/cinema/later/chengdu/"
response = requests.get(url)
 
soup = BeautifulSoup(response.content.decode('utf-8'), 'lxml')
 
all_movies = soup.find('div', id="showing-soon")  # 先找到最大的div
 
# 先把所有的数据存到这个list里面
all_movies_info = []
for each_movie in all_movies.find_all('div', class_="item"):  # 从最大的div里面找到影片的div
    # print(each_movie)  # 输出每个影片div的内容
    all_a_tag = each_movie.find_all('a')
    all_li_tag = each_movie.find_all('li')
    movie_name = all_a_tag[1].text
    moive_href = all_a_tag[1]['href']
    movie_date = all_li_tag[0].text
    movie_type = all_li_tag[1].text
    movie_area = all_li_tag[2].text
    movie_lovers = all_li_tag[3].text.replace('人想看', '') #  去掉除了数字之外的字
    # 把电影数据添加到list
    all_movies_info.append({'name': movie_name, 'date': movie_date, 'type': movie_type, 
                            'area': movie_area, 'lovers': movie_lovers})
    # print('名字:{},日期:{},类型:{},地区:{}, 关注者:{}'.format(
        # movie_name, movie_date, movie_type, movie_area, movie_lovers))
# 绘制电影类型占比图
all_types = [i['type'] for i in all_movies_info]
type_count = {}
for each_types in all_types:
    # 把 爱情 / 奇幻 这种分成[爱情, 奇幻]
    type_list = each_types.split(' / ')
    for e_type in type_list:
        if e_type not in type_count:
            type_count[e_type] = 1
        else:
            type_count[e_type] += 1
# print(type_count) # 检测是否数据归类成功
 
type_pie = Pie('上映类型占比', title_top=20)  # 因为类型过多影响标题,所以标题向下移20px
# 直接取出统计的类型名和数量并强制转换为list。
type_pie.add('', list(type_count.keys()), list(type_count.values()), is_label_show=True)
type_pie  # jupyter下直接显示                

上映日期图

# 可视化爬取结果
import requests
from bs4 import BeautifulSoup  # 从bs4引入BeautifulSoup
from pyecharts import Page, Pie, Bar  # 引入绘图需要的模块
 
#请求网页
url = "https://movie.douban.com/cinema/later/chengdu/"
response = requests.get(url)
 
soup = BeautifulSoup(response.content.decode('utf-8'), 'lxml')
 
all_movies = soup.find('div', id="showing-soon")  # 先找到最大的div
 
# 先把所有的数据存到这个list里面
all_movies_info = []
for each_movie in all_movies.find_all('div', class_="item"):  # 从最大的div里面找到影片的div
    # print(each_movie)  # 输出每个影片div的内容
    all_a_tag = each_movie.find_all('a')
    all_li_tag = each_movie.find_all('li')
    movie_name = all_a_tag[1].text
    moive_href = all_a_tag[1]['href']
    movie_date = all_li_tag[0].text
    movie_type = all_li_tag[1].text
    movie_area = all_li_tag[2].text
    movie_lovers = all_li_tag[3].text.replace('人想看', '') #  去掉除了数字之外的字
    # 把电影数据添加到list
    all_movies_info.append({'name': movie_name, 'date': movie_date, 'type': movie_type, 
                            'area': movie_area, 'lovers': movie_lovers})
    # print('名字:{},日期:{},类型:{},地区:{}, 关注者:{}'.format(
        # movie_name, movie_date, movie_type, movie_area, movie_lovers))
# 绘制电影上映日期柱状图
all_dates = [i['date'] for i in all_movies_info]
dates_count = {}
for date in all_dates:
    if date not in dates_count:
        dates_count[date] = 1
    else:
        dates_count[date] += 1
# print(dates_count)  # 输出验证数据是否正确
 
dates_bar = Bar('上映日期占比')
dates_bar.add('',list(dates_count.keys()), list(dates_count.values()), is_label_show=True)
dates_bar  # jupyter下直接显示

完整数据可视化

# 可视化爬取结果
import requests
from bs4 import BeautifulSoup  # 从bs4引入BeautifulSoup
from pyecharts import Page, Pie, Bar
 
#请求网页
url = "https://movie.douban.com/cinema/later/chengdu/"
response = requests.get(url)
 
soup = BeautifulSoup(response.content.decode('utf-8'), 'lxml')
 
all_movies = soup.find('div', id="showing-soon")  # 先找到最大的div
 
all_movies_info = []
for each_movie in all_movies.find_all('div', class_="item"):  # 从最大的div里面找到影片的div
    # print(each_movie)  # 输出每个影片div的内容
    all_a_tag = each_movie.find_all('a')
    all_li_tag = each_movie.find_all('li')
    movie_name = all_a_tag[1].text
    moive_href = all_a_tag[1]['href']
    # 运行报错 index out of range:是因为有电影没显示日期
    if len(all_li_tag) == 4:
        movie_date = all_li_tag[0].text
        movie_type = all_li_tag[1].text
        movie_area = all_li_tag[2].text
        movie_lovers = all_li_tag[3].text.replace('人想看', '')
    else:  # 网站结构改变,跟着改变代码
        movie_date = "未知"
        movie_type = all_li_tag[0].text
        movie_area = all_li_tag[1].text
        movie_lovers = all_li_tag[2].text.replace('人想看', '')
    all_movies_info.append({'name': movie_name, 'date': movie_date, 'type': movie_type, 
                            'area': movie_area, 'lovers': movie_lovers})
    # print('名字:{},日期:{},类型:{},地区:{}, 关注者:{}'.format(
        # movie_name, movie_date, movie_type, movie_area, movie_lovers))
# print(all_movies_info)  # 输出一下检查数据是否传递成功
 
page = Page() # 同一个网页显示多个图
 
# 绘制关注者排行榜图
 
# i['name'] for i in all_movies_info 这个是Python的快捷方式
# 这一句的作用是从all_movies_info这个list里面依次取出每个元素,
# 并且取出这个元素的 name 属性
sort_by_lovers = sorted(all_movies_info, key=lambda x: int(x['lovers']))
all_names = [i['name'] for i in sort_by_lovers]
all_lovers = [i['lovers'] for i in sort_by_lovers]
lovers_rank_bar = Bar('电影关注者排行榜')
lovers_rank_bar.add('', all_names, all_lovers, is_convert=True, is_label_show=True, label_pos='right')
page.add(lovers_rank_bar)
 
# lovers_rank_bar
 
# 绘制电影类型占比图
all_types = [i['type'] for i in all_movies_info]
type_count = {}
for each_types in all_types:
    # 把 爱情 / 奇幻 这种分成[爱情, 奇幻]
    type_list = each_types.split(' / ')
    for e_type in type_list:
        if e_type not in type_count:
            type_count[e_type] = 1
        else:
            type_count[e_type] += 1
# print(type_count) # 检测是否数据归类成功
 
type_pie = Pie('上映类型占比', title_top=20)
type_pie.add('', list(type_count.keys()), list(type_count.values()), is_label_show=True)
# type_pie
 
page.add(type_pie)
 
# 绘制电影上映日期柱状图
all_dates = [i['date'] for i in all_movies_info]
dates_count = {}
for date in all_dates:
    if date not in dates_count:
        dates_count[date] = 1
    else:
        dates_count[date] += 1
# print(dates_count)  # 输出验证数据是否正确
 
dates_bar = Bar('上映日期占比')
dates_bar.add('',list(dates_count.keys()), list(dates_count.values()), is_label_show=True)
# dates_bar
 
page.add(dates_bar)
 
page  # jupyter下自动显示

数据分析

  • 关注者排行榜图里,网络迷踪,12.14上映,美国犯罪嫌疑剧情片,关注人数123710;狗十三,12.07上映,大陆家庭剧情片,关注人数106787;龙猫,12.14上映,日漫,关注人数98370;这三部电影的受欢迎度远远超过其他电影,最受大众期待‘
  • 上映电影类型图里,最多的是剧情类,其次是爱情和喜剧。
  • 上映日期也表明了,12月14日上映的电影最多,其中最受欢迎的两部网络迷踪和龙猫就在当天上映。
  • 龙猫 如果你在下雨天的车站,遇到被淋湿的妖怪,请把雨伞借给它,你会得到森林的通行证哦
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容

  • 【飏飔妍儿20161115学而思D94】静怡带读《爱弥儿》D2兴趣是最好的老师,嘿嘿,想更科学的育儿就成了香知悦读...
    飏飔妍儿阅读 168评论 0 0
  • 在我眼里 浪费是个中性词 像夏日的午后 风扇对着小腿呼呼的吹 冰镇饮料和熟透了的西瓜 时间和阳光一起从窗口流走 就...
    余余余余余余余_阅读 225评论 1 0
  • 我相信了一种观点,就是人面临生命的最终点,脑海中会不自觉地闪现出人生历史的重要片段。几乎是毫无阻挡地迅速...
    古月xv阅读 132评论 0 0
  • 我眼中的保险 保险是国内最主要的三个金融行业之一。三个金融行业分别是:银行、证券、保险。有句话是这么说的:你不理财...
    A_JEAN阅读 4,144评论 0 0