Zeppelin Job cancelled because SparkContext was shut down

问题描述

集群 Zeppelin 用户反馈如下的问题:

我中午又跑了一遍,报了个新的错误,Py4JJavaError: An error occurred while calling o6130.count. : org.apache.spark.SparkException: Job 183 cancelled because SparkContext was shut down

详细的异常栈信息如下

Py4JJavaError: An error occurred while calling o6130.count.
: org.apache.spark.SparkException: Job 183 cancelled because SparkContext was shut down
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:837)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:835)
    at scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
    at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:835)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:1848)
    at org.apache.spark.util.EventLoop.stop(EventLoop.scala:83)
    at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1761)
    at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1931)
    at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1361)
    at org.apache.spark.SparkContext.stop(SparkContext.scala:1930)
    at org.apache.spark.SparkContext$$anonfun$2.apply$mcV$sp(SparkContext.scala:573)
    at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188)
    at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1992)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188)
    at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188)
    at scala.util.Try$.apply(Try.scala:192)
    at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188)
    at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178)
    at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:54)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
    at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:297)
    at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2770)
    at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2769)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3254)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3253)
    at org.apache.spark.sql.Dataset.count(Dataset.scala:2769)
    at sun.reflect.GeneratedMethodAccessor86.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)

(<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError('An error occurred while calling o6130.count.\n', JavaObject id=o6131), <traceback object at 0x7f703933d408>)

问题定位

通过 YARN 查看用户提交应用的日志,在日志结束位置处找到下面的异常信息。

image.png

上面的异常说明该应用 executor 失败的次数超过了上限,所以被主动 stop 了。

再查看日志中的其他异常信息,发现有大量 container 异常退出的异常,退出原因是 OOM (exitCode = 52 )

image.png

综上分析,上述问题产生的原因是

executor 运行中出现 OOM -> container 异常退出 -> 退出超过上限 -> 应用被主动 kill

关于 executor 失败次数限制可以通过参数 spark.yarn.max.executor.failures 来控制,该参数的默认值为 numExecutors * 2, with minimum of 3,参考 Running Spark on YARN

解决办法

  • 优化应用代码,减少内存的使用
  • 增大 executore 内存
  • 提高 spark.yarn.max.executor.failures (不推荐)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容