标题党,这个是总目标。
蛋白质高通量鉴定,目前主要就是通过质谱,依靠已知的蛋白库,坑蒙拐骗猜,猜对了是运气,猜错了是原理问题,运气运气。
一直很头疼这个问题,如果可以让蛋白质检测和核酸测序一样,ATGC直接读出来,那多么爽。
一直在考虑这个问题,
前几天突然有想法,结合DNA三代测序的原理,设计了一个蛋白质高通量测序的基本框架。
涉及到的技术主要有:
- 纳米孔
- 如何固定蛋白
- 利用Edman降解让每个蛋白质分子的氨基酸,在每一轮脱落一个,进入相应固定位置的纳米孔
- 对每个纳米孔降解下来的单个氨基酸进行检测
- 涉及到每个纳米孔的后续的一系列检测,包括如何鉴定到每个氨基酸,如何分辨氨基酸,电极、pH等
- 还有各种可能是微流控方面的技术,针对不同氨基酸特征进行不同的检测
- 收集各种信号,整合起来。
如果实现这一套步骤,蛋白质鉴定可以说,走向和测序一样的道路,不用质谱了,只要通量继续发展,达到饱和,定量、序列,要啥有啥。不过后续很复杂的样子,。
查了下相关方面的最新进展,相当一部分步骤已经可以实现了,如下:
2018年新进展
Edman降解,以及固定蛋白、部分氨基酸检测,类似2代测序方法,我想用类似3代测序检测方案
Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures
https://www.nature.com/articles/nbt.4278
Jagannath Swaminathan, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nature Biotechnology. Oct 2018.
该文章利用一种称为单分子荧光测序的新方法,对单个样本中( zeptomole-scale,10^-21摩尔)的蛋白分子进行测序。他们
- 对多肽样本中的半胱氨酸(C)和赖氨酸残基(K)进行选择性的荧光标记,
- 然后将其固定在玻璃表面,通过edman酶解的方式从N端一个一个解离氨基酸,
- 并通过光学方法(类似二代测序拍照检测方法)方法来监测Edman降解后每个分子(孔位)的荧光减少量。
- 之后,他们将获得的荧光序列在参考蛋白质数据库中来比对,得到匹配的蛋白质信息。
ref:生物通中文报道 Nature子刊:一种灵敏的蛋白质测序方法
http://www.ebiotrade.com/newsf/2018-10/20181023152625830.htm
评论
Proteomics goes parallel
Single-molecule method identifies proteins in mixtures
纳米孔 方法探索 蛋白质方向
Single-molecule protein identification by sub-nanopore sensors
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005356
Single-molecule peptide fingerprinting
https://www.pnas.org/content/115/13/3338
优势是利用了纳米孔技术,同时也是利用2种标记的氨基酸,但是是利用纳米孔技术探测标记的氨基酸的电位,也是利用算法推测蛋白质。
理论上,这个方法继续发展,对各个氨基酸分别标定,或者说尽可能多的分别标记氨基酸,产生不同的信号,就可以完全解决我们的问题了。因为这个还不用edman,不用固定,只要蛋白质分子固定的通过ClpXP protein complex就可以完成检测了。和三代一样。
提出问题:To obtain ordered determination of fluorescently labeled amino acids, we needed a molecular probe that can scan a peptide in a processive manner. We adopted a naturally existing molecular machinery, the AAA+ protease ClpXP from Escherichia coli. The ClpXP protein complex is an enzymatic motor that unfolds and degrades protein substrates. ClpX monomers form a homohexameric ring (ClpX6) that can exercise a large mechanical force to unfold proteins using ATP hydrolysis (11, 12). Through iterative rounds of force-generating power strokes, ClpX6 translocates substrates through the center of its ring in a processive manner (13, 14), with extensive promiscuity toward unnatural substrate modifications, including fluorescent labels (15⇓–17). Protein substrates are recognized by ClpX6 when they display specific disordered sequences, such as the 11-aa C-terminal ssrA tag (18). ClpX6 targets substrates for degradation by feeding them into ClpP14, a homotetradecameric protease that contains 14 cleavage sites and self-assembles into a barrel-shaped complex that encloses a central chamber (19).
结论:Our method has the potential to scan full-length proteins from end to end without the need for fragmentation. Sequencing substrates are processed at a constant speed, allowing for accurate protein identification (10). In this proof-of-concept study, we show our capability to detect low-frequency subpopulations of differentially labeled substrates, as well as our capacity to detect distinct acceptor fluorophores on a single substrate in a sequential manner. The platform we present here has the capability to transform proteomics from a basic research tool into an invaluable asset to clinical diagnostics.
附综述,纳米孔技术检测蛋白质
Protein Detection Through Single Molecule Nanopore
https://www.sciencedirect.com/science/article/pii/S187220401861093X
Paving the way to single-molecule protein sequencing
https://www.nature.com/articles/s41565-018-0236-6
检测氨基酸,利用不同的电位
Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore
https://www.nature.com/articles/s41467-018-03418-2
Detecting Electron Transport of Amino Acids by Using Conductance Measurement
https://pdfs.semanticscholar.org/87d5/680bb86b0a8394236f3c2475f6537f6454e6.pdf
如果可以利用电位,或者氨基酸标记不同东西产生不同电位,就完美了
Massively parallel sequencing of peptides could signal a new era of high-throughput proteomics.
If this technology gets developed, this can really revolutionize proteomics, just like Next Generation Sequencing has revolutionized genomics and transcriptomics.
与现有技术相比,该类方法具有更高的通量和灵敏度,因此可以更好地检测疾病的生物标志物,还可能提供一种全新的方式研究各种蛋白质问题。但是20种氨基酸如何才能更好的区分出来,依旧是无法逾越的障碍。
如何才能分别标记20种氨基酸,或者如何通过多种检测手段区分20种氨基酸,是未来的必经之路!
The era of Proteomics is Coming!
期待有识之士一起来想办法!欢迎跟帖讨论