使用torch.nn
包构建神经网络, nn.Module
包括网络的层, 前向传播forward(input)
返回output
卷积网络
训练神经网络的流程有
- 定义神经网络模型(有可学习的参数)
- 输入训练数据集迭代
- 将数据输入网络(前向传播)
- 计算损失函数
- 误差反向传播
- 更新网络参数
weight = weight - learning_rate * gradient
定义网络
from __future__ import print_function
import torch
from torch.autograd import Variable
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 1 input image channel, 6 output channels, 5x5 square convolution kernel
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120) # an affine operation: y = Wx + b
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.pool = nn.MaxPool2d((2,2)) # Max pooling over a (2, 2) window
self.relu = nn.ReLU()
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, self.num_flat_features(x))
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self,x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
Net (
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (400 -> 120)
(fc2): Linear (120 -> 84)
(fc3): Linear (84 -> 10)
(pool): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(relu): ReLU ()
)
查看网络参数
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's weight
10
(6L, 1L, 5L, 5L)
输入一个随机生成的数据
input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
print(out)
Variable containing:
-0.0514 -0.0893 0.0555 -0.0256 0.0736 -0.0938 0.1239 0.0804 0.0735 0.0040
反向传播
net.zero_grad()
out.backward(torch.randn(1, 10))
误差函数
output = net(input)
target = Variable(torch.arange(1, 11))
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
反向传播计算梯度
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
更新参数
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
使用
torch.optim
优化网络
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update