图数据库(1):图数据库介绍

我们熟悉的关系型数据库如mysql,oracle等,不过名不副实,Mysql等并不适合存储或查询复杂关系。而图数据库,当然也不是存图片的。

图什么是-What?

形式上,图是点和边的组合;术语上,图是「一些节点」和「关联这些节点的联系」的组合。
图广泛存在于世界之中,从人与人之间的联系、工厂与消费者之间的联系到电话与数据中心网络节点之间的关系、基因和蛋白质之间的关联,都会涉及大量的高度关联数据。这些数据构成了庞大的图,图数据库就是呈现和查询这些关联的做好的方式。

图就是世界的广泛联系。

带标签的属性图(labeled property graph)是目前最流行的图模型形式。带标签的属性图有几个特点:

  • 它包含节点和联系
  • 节点上有属性,如年龄、性别、学历、情感状态等。
  • 节点上有一个多个标签,比如动漫、科技、美食等。
  • 联系有名字和方向,并且总有一个开始节点和结束节点。
  • 联系也有属性,比如关注、、跑男团等。

图数据库的发展趋势-When?

从2013年开始,图数据库(neo4j为例)和大数据(Hive) 都开始进入增长阶段,相对来说,neo4j的增长趋势更为强烈;到了2016年,二者都开始进入稳定期。可见,图数据库的应用领域其实是非常可观的。


比起传统的信息存储和组织模式,图数据库能够很清晰揭示复杂的模式,尤其在错综复杂的社交,物流,金融风控行业效果更为明显。

百花齐放的图数据库,有Operational 图数据库、RDF图数据库、多模式图数据、分析及大图数据库,图数据库的关注度越来越多,并且大都是有持续在更新。

参考链接https://cloud.tencent.com/developer/article/1436499

图数据库-Why?

随着社交、电商、金融、零售、物联网等行业的快速发展,现实社会织起了了一张庞大而复杂的关系网,传统数据库很难处理关系运算。大数据行业需要处理的数据之间的关系随数据量呈几何级数增长,亟需一种支持海量复杂数据关系运算的数据库,图数据库应运而生。

生活就是一张大网,不是吗?林林总总错综复杂的关系就是一张超大图。用图数据库表示这些关系数据简直是天经地义,是数字仿生学。

世界上很多著名的公司都在使用图数据库。比如:

  • 社交领域:Facebook, Twitter,Linkedin用它来管理社交关系,实现好友推荐
  • 零售领域:eBay,沃尔玛使用它实现商品实时推荐,给买家更好的购物体验
  • 金融领域:摩根大通,花旗和瑞银等银行在用图数据库做风控处理
  • 汽车制造领域:沃尔沃,戴姆勒和丰田等顶级汽车制造商依靠图数据库推动创新制造解决方案
  • 电信领域:Verizon, Orange和AT&T 等电信公司依靠图数据库来管理网络,控制访问并支持客户360
  • 酒店领域:万豪和雅高酒店等顶级酒店公司依使用图数据库来管理复杂且快速变化的库存

学过数据结构这么课程的同学脑海中应该或多或少有的概念。
图由两个元素组成:节点关系
图数据库(Graph database)并非指存储图片的数据库,而是以图这种数据结构存储和查询数据。

根据存储和处理模型不同,市面上图数据库也有一些区分。
比如:
Neo4J就是属于原生图数据库,它使用的后端存储是专门为Neo4J这种图数据库定制和优化的,理论上说能更有利于发挥图数据库的性能。
而JanusGraph不是原生图数据库,而将数据存储在其他系统中,比如HBase。

参考https://www.cnblogs.com/mantoudev/p/10414495.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容