Chatbot入门1:智能对话引擎基本原理

https://blog.csdn.net/qq_40027052/article/details/78723576  

客服机器人在解析用户query的第一步是在去判断用户的意图。意图检测是由叫做“Route bot(路由机器人)”的系统来完成,比如,当用户输入“我银行卡余额”时,可以识别出用户此时是想完成“查询银行卡余额”这一任务;而当用户询问“银行卡余额在哪儿可以查”时,则需要识别出用户需要一个查询银行卡余额的路径。确认用户意图后,路由机器人再将此query交给不同的“子机器人(Botlets)”去处理。最后,Botlets生成的回复将在策略中心完成融合、去重和重排序等过程,最终产生一个或一组最优解

botlets中列举了多类型机器人,我们着重介绍最为常见的三类:

检索型机器人:FAQ-Bot

任务型机器人:Task-Bot

闲聊型机器人:Chitchat-Bot


1、检索型机器人

知识库检索型机器人,围绕的是基础的问答型知识,例如“密码忘记了怎么办?” ,此类问题可以标准化的回复来解决。


1.1 技术原理

算法实现的步骤,概括如下:

1、问题理解阶段,运用NLP技术进行问题的分析。

基础的技术包括分词、词性识别、命名实体识别,语义归一等技术,目的是为了在粗排阶段尽可能的把相关问题进行找回。

2、由于query和候选的问题包含的词数量一般较少,此时会利用同义词和复述技术,对问题进行扩展与改写;

3、基于问题的分析,在知识库中找回相关的候选问题;

4、由于候选问题可能是比较宽泛的,此时需要更精确的算法,来匹配最相近的结果。这里会运用到深度学习模型进行文本的特征表示,进行文本相似度的精排计算,从而返回最好的一个或几个结果。


1.2 知识维护

检索型机器人通常需要维护对应的QA知识库,作为问题检索的基本素材库,针对结构化知识库的基本说明,详见“知识体系构建”一文。


2、任务型机器人

在实际咨询场景中,用户某些问题的解决,涉及到用户身份、信息状态等限定条件,例如 “帮我查一下我的物流到哪了?”

针对该问题,客服通常需要了解用户ID、订单ID等具体信息,才能协助用户查询到具体结果


处理此类问题的核心步骤:

1)识别意图(intent):用户要表达的诉求是什么?

2)识别参数(slot):为解决这个问题,需要的“限定条件”是什么?是否已提供?

往往一个问题中,需要用户提供的参数不止一个,且用户通常不会在一个问题中囊括所有有效信息,因此需要机器人主动进行多轮对话引导,直到收集完所有的必备参数。


2.1 几个核心概念的解释

多轮对话:

(封闭域)多轮对话是一种,在人机对话中,初步明确用户意图之后,获取必要信息以最终得到明确用户指令的方式。多轮对话与一件事情的处理相对应。


参数(slot):

业内通常称之为“槽”,它是完成用户意图所必备的“限定条件”


Q:所谓的“参数”,必须通过多轮对话的形式获取吗?

不一定。参数可分为显性参数,与隐性参数。

在用户与我们开始对话前,其实我们已经能够获取到其登录状态、用户身份、地理位置等“画像”信息,这些就是典型的“隐性参数”;

而显性参数则是与访客提问的意图直接相关,回到上文的例子“查询物流进展”,此时我们就必须定位到用户具体咨询的哪一个订单,也即“订单号”这个参数。


Q:显性参数,必须通过对话交互获取吗?

也是不一定的,在实际对话设计中,获取参数的方式通常有如下几种:

1)贴心的用户可能已经在表达意图时,已帮我们指定好具体参数,例如:“订单号123456,查一下这个物流到哪了”;

2)从用户行为中去获取,例如用户从某一订单详情页接入对话,咨询“这个订单物流到哪了?”,此时我们可以默认将“这个”指代为当前接入页所对应的“订单号”;

3)从上下文中去获取,例如用户当前咨询主题,主要围绕某一订单开展,咨询了关于该订单的发票、金额、物流等一系列信息,此时我们可以始终对“订单号”这一参数进行记录,保持语境的统一;

4)如以上方式,均无法定位用户具体参数,那么才需要交互手段出面获取


2.2 技术原理


1)目前,业内主流的做法是将意图识别作为一个文本分类问题,不过这种方法存在的问题是,每新增一个意图都需要重新训练模型,且意图数量较多的情况下可能无法获得比较好的效果。将意图识别作为一个排序问题,根据用户问句和该意图下用户表述的相似度排序来进行意图的判断,也是业内广泛采用的方法之一;

2)对参数的抽取。“参数”可以是一类词典的集合,如地点名词集、景点名词集;也可以是某一规则的表达式,如订单号生成规则:“年份+日期+随机6位数”

3)在实际对话设计中,还需要综合考虑隐性参数获取、上下文语境、用户跳出等综合因素,会在具体应用案例中说明,在此不赘述。


2.3 对话流程设计

在对话设计中值得思考的是:准确识别用户的意图,其实到这只是我们的第一步,最短路径,快速直接解决用户问题,才是我们的最终目的。

在获取到所需信息后,“我们能为用户做什么” 才是产品产生价值和差异的核心。


2.4 知识维护

意图的训练需要大量!的语料

内部团队人力有限,标注数量比较尴尬的情况下,目前采用的方式是运用算法进行同义词扩展和复述技术,对语料进行发散扩展(本质还是需要人工进行特征的定义),以达到训练所需的数量要求


3. 闲聊型机器人

在客服机器人的对话场景中,闲聊起到的是日常寒暄、情感维系的作用,并不属于业务解决的范畴,仅作简单介绍


3.1 闲聊在客服场景中的存在价值

个人认为最基础在于两点:

1)日常基本的寒暄交流,用户与客服的对话,经常是由一句“你好 ” “我问一下”开始的,能够顺利回应此类开场白,是对话能顺利延续的基础;

2)在机器人无法顺利解决问题时,起到缓和用户情绪的作用。这需要在话术上下功夫,“我已经拿小本本记下了,会尽快学会哒 ” 


3.2 技术原理

通常使用机器翻译中的深度学习seq2seq框架来产生答复

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355