从String源码看Java中的编码

从String源码的一个构造方法说起

public String(int[] codePoints, int offset, int count) {}

what?codePoints是什么鬼?为了看懂这个源码,有必要了解一个这个codePoints(代码点)的相关知识,其实整个String源码都会不少的涉及的java编码的相关知识,比如indexOf(int ch, int fromIndex)

一脸懵逼

为什么会有Unicode

​ 学C/C++的时候我们知道了ASCII码,但这个能表示的字符有限,后来又出现了一些乱七八糟的编码表,Unicode就是企图统一一下编码而产生的。

Unicode的介绍

​ Unicode的第一个版本是用2个字节来编码所有的字符的,因为编码者们认为2^16=65536能容纳世界上所有语言,后来他们发现他们错了,哈哈哈,第二个版本就用4个字节来编码所有字符,这个后面说。

先以第一个版本来说,用2个字节来编码所有字符(这个要很清晰,不然会有点懵),正好UTF-16也是这么弄的,大家误解就以为Unicode就是UTF-16。这里会涉及两个步骤,一个步骤是字符与编码一一对应的问题,如a对97,b对98如此;另一个是如何将编码的二进制这些01串保存起来的问题,这就实现了UTF(unicode transformation format),有UTF-8,UTF-16……

UTF-8与UTF-16

​ UTF16很好理解,在第一个版本的Unicode中,就是2个字节保存一个字符。UTF8就不同,它可能用1个/2个/3个来表示。那我怎么知道它用来多少个自己来表示呢?这就需要一个规定:

  1. 0开头的,就表示1个字节表示一个字符,即0xxx xxxx,如0101 0011
  2. 110x xxxx 10xx xxxx这种表示把2个字节当成一个单元,表示一个字符。
  3. 1110 xxxx 10xx xxxx 10xx xxxx这种表示3个字节当成一个单元,表示一个字符。

由上面我们可以看出UTF-8需要判断每个字节中的开头标志信息,所以如果一当某个字节在传送过程中出错了,就会导致后面的字节也会解析出错.而UTF-16不会判断开头标志,即使错也只会错一个字符,所以容错能力强.

​ 从上面可以看出,当1个字节表示一个字符时,能表示2^7=128个字符,2个字节表示时能表示2048个字符,3个单元表示时能表示65536个字符。由于"汉"的编码27721大于2048了所有两个字节还不够,只能用三个字节来表示。

接着看看第二个版本

​ 相关规定:

  • Unicode 统一编码 0x000000-0x10ffff,其中0x0000-0xffff为基本多语言平面字符

  • bmp 基本多语言平面字符,对应Unicode中0x0000-0xffff

  • Unicode码空间为U+0000到U+10FFFF,一共有17个平面,每个平面可容下65536个code point。也就是17 * 65536=1,114,112。但是其中的U+D800-U+DFFF作为UTF-16编码代理区保留,也就是它们不会作为code point分配给字符,保留数目是8 * 256=2048。

    看到这里,我们可以知道:

  • 如果在BMP级别中,那么16bits(一个代码单元)就足够表示出字符的Unicode值。

  • 那不在的呢,就属于增补字符了。那就是需要4个字节来表示,那4个字节为啥不是能表示0x00000000-0xffffffff个字符呢,只能表示到0x10ffff呢,这就有点像UTF-8的意思了,占用几个位置来表示我需要用4个字节来显示这个字符,那么需要占用多少位呢?因为只需要表示0x10 ffff - 0x10000 = 0xf ffff即可,就是20位,也就是说,虽然你给我分配4个字节32位这么多,但我只需要20位就足够表示0x10000~0x10FFFF,那剩下12位怎么办呢,这样吧,每2个字节用6位作为代理区,剩下10位用作编码,这就是U+D800-U+DFFF作为UTF-16编码代理区保留的规定了。

  • 那为什么是0xD800~0xDFFF呢,我们来看看,假设我们是编码者,我们现在要留一段来做代理区,假设我做代理区的起点选了0xD800吧,对应的是1100 1000 0000 0000,那我把剩下10位编码上去,就能表示:1101 1000 0000 0000~1101 1011 1111 1111即0xD800~ 0xDBFF,这个就算高位代理区了,然后同理,0xDC00~ 0xDFFF就算地位代理区了。

  • 好了,BMP区域有2048个编码被用作代理区了,所以它们是不能用来表示任何字符的。

Last but not least

简要的讨论了一下以String构造方法引出的一点问题,其实java的编码还是蛮复杂的,一口气说太多太复杂,估计大脑cpu也不够用了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容