数据降维方法介绍(十)

第六种方法:因子分析(Factor  Analysis)

姓名:何源  学号:21011210073  学院:通信工程学院

转载:因子分析(FA)算法简述

【嵌牛导读】因子分析法简介

【嵌牛鼻子】因子分析法(FA)

【嵌牛提问】因为分析法的概念是什么?因子分析法的原理是什么?

【嵌牛正文】

什么是因子分析法?

因子分析法是指: 研究从变量群中提取共性因子的统计技术,这里的共性因子指的是不同变量之间内在的隐藏因子。例如,一个学生的英语、数据、语文成绩都很好,那么潜在的共性因子可能是智力水平高。因此,因子分析的过程其实是寻找共性因子和个性因子并得到最优解释的过程。

因子分析法基本思想是: 根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同组的变量不相关或相关性较低,每组变量代表一个基本结构一即公共因子。

因子分析有两个核心问题: 一是如何构造因子变量,二是如何对因子变量进行命名解释。

因子分析类型: R型因子分析与Q型因子分析,就像聚类分析分为R型和Q型一样,R型的因子分析是对变量作因子分析,Q型因子分析是对样品作因子分析,本文是以R型因子分析展开。

因子分析法的应用背景?

主要应用于以下两种场景:

1.假如有 m 个样本,每个样本的维度是 n, 如果 n » m;这时哪怕拟合出一个高斯模型都很困难,更不用说高斯混合, 为什么呢?其实,这和解多元线性方程组是一样的道理,就是自变量的个数多于非线性相关的方程的个数,这必然导致解的不唯一,虽然在解方程的时候可以随便选一个解满足方程组,但是对于某一实际数据集,往往样本对应的概率分布在客观上都是唯一的,只是我们无法简单地用概率论中的几个典型的分布准确表示出来罢了!

2.m 个样本的维度都较低。用高斯分布对数据建模,用最大似然估计去估计均值(期望)和方差:估计的均值为\mu =\frac{1}{m}\sum_{i=1}^m x_i方差为\sigma =\frac{1}{m}\sum_{i=1}^m(x_i-\mu)(x_i-\mu)^T,其中方差矩阵\sigma 为奇异矩阵。但是这两项在计算多元高斯分布时,又都是必不可少的。所以,除非 m 比 n 大一定较合适的数值,否则对方差和均值的最大似然估计将会很难找到正确的值。

因子分析法的基本步骤:

应用因子分析算法时,常常有如下几个基本步骤:

1.确定原有若干变量是否适合于因子分析;因子分析的基本逻辑是从原始变量中构造出少数几个具有代表意义的因子变量,这就要求原有变量之间要具有比较强的相关性,否则,因子分析将无法提取变量间的“共性特征”(变量间没有共性还如何提取共性?)。实际应用时,可以使用相关性矩阵进行验证,如果相关系数小于0.3,那么变量间的共性较小,不适合使用因子分析;也可以用KMO 和 Bartlett 的检验来判断是否适合做因子分析,一般来说KMO的值越接近于1越好,大于zhi0.5的话适合做因dao子分析,你的KMO值是0.674大于0.5。Bartlett 的检验主要看Sig.越小越好,你的接近于0.由此可以得出,你的数据适合做因子分析。

2.构造因子变量;因子分析中有多种确定因子变量的方法,如基于主成分模型的主成分分析法和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。

3.利用旋转使得因子变量更具有可解释性 ;在实际分析工作中,主要是因子分析得到因子和原变量的关系,从而对新的因子能够进行命名和解释,否则其不具有可解释性的前提下对比PCA就没有明显的可解释价值。

4.计算因子变量的得分 。子变量确定以后,对每一样本数据,希望得到它们在不同因子上的具体数据值,这些数值就是因子得分,它和原变量的得分相对应。

具体而言:

(1) 相关性检验,一般采用KMO检验法和Bartlett球形检验法两种方法来对原始变量进行相关性检验;

(2) 输入原始数据Xn*p,计算样本均值和方差,对数据样本进行标准化处理;

(3) 计算样本的相关矩阵R;

(4) 求相关矩阵R的特征根和特征向量;

(5) 根据系统要求的累积贡献率确定公共因子的个数;

(6) 计算因子载荷矩阵A;

(7) 对载荷矩阵进行旋转,以求能更好地解释公共因子;

(8) 确定因子模型;

(9) 根据上述计算结果,求因子得分,对系统进行分析。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容