来自阿里的流处理框架:JStorm(转载)

关于流处理框架,在先前的文章汇总已经介绍过Strom,今天学习的是来自阿里的的流处理框架JStorm。简单的概述Storm就是:JStorm 比Storm更稳定,更强大,更快,Storm上跑的程序,一行代码不变可以运行在JStorm上。直白的将JStorm是阿里巴巴的团队基于Storm的二次开发产物,相当于他们的Tengine是基于Ngix开发的一样。以下为阿里巴巴团队放弃直接使用Storm选择自行开发JStorm的原因:

阿里拥有自己的实时计算引擎

类似于hadoop 中的MR

开源storm响应太慢

开源社区的速度完全跟不上Ali的需求

降低未来运维成本

提供更多技术支持,加快内部业务响应速度

现有Storm无法满足一些需求

现有storm调度太简单粗暴,无法定制化

Storm 任务分配不平衡

RPC OOM一直没有解决

监控太简单

对ZK 访问频繁

JStorm相比Storm更稳定

Nimbus 实现HA:当一台nimbus挂了,自动热切到备份nimbus

原生Storm RPC:Zeromq 使用堆外内存,导致OS 内存不够,Netty 导致OOM;JStorm底层RPC 采用netty + disruptor保证发送速度和接受速度是匹配的

新上线的任务不会冲击老的任务:新调度从cpu,memory,disk,net 四个角度对任务进行分配,已经分配好的新任务,无需去抢占老任务的cpu,memory,disk和net

Supervisor主线

Spout/Bolt 的open/prepar

所有IO, 序列化,反序列化

减少对ZK的访问量:去掉大量无用的watch;task的心跳时间延长一倍;Task心跳检测无需全ZK扫描。

JStorm相比Storm调度更强大

彻底解决了storm 任务分配不均衡问题

从4个维度进行任务分配:CPU、Memory、Disk、Net

默认一个task,一个cpu slot。当task消耗更多的cpu时,可以申请更多cpu slot

默认一个task,一个memory slot。当task需要更多内存时,可以申请更多内存slot

默认task,不申请disk slot。当task 磁盘IO较重时,可以申请disk slot

可以强制某个component的task 运行在不同的节点上

可以强制topology运行在单独一个节点上

可以自定义任务分配,提前预约任务分配到哪台机器上,哪个端口,多少个cpu slot,多少内存,是否申请磁盘

可以预约上一次成功运行时的任务分配,上次task分配了什么资源,这次还是使用这些资源

JStorm相比Storm性能更好

JStorm 0.9.0 性能非常的好,使用netty时单worker 发送最大速度为11万QPS,使用zeromq时,最大速度为12万QPS。

JStorm 0.9.0 在使用Netty的情况下,比Storm 0.9.0 使用netty情况下,快10%, 并且JStorm netty是稳定的而Storm 的Netty是不稳定的

在使用ZeroMQ的情况下, JStorm 0.9.0 比Storm 0.9.0 快30%

性能提升的原因:

Zeromq 减少一次内存拷贝

增加反序列化线程

重写采样代码,大幅减少采样影响

优化ack代码

优化缓冲map性能

Java 比clojure更底层

JStorm的其他优化点

资源隔离。不同部门,使用不同的组名,每个组有自己的Quato;不同组的资源隔离;采用cgroups 硬隔离

Classloader。解决应用的类和Jstorm的类发生冲突,应用的类在自己的类空间中

Task 内部异步化。Worker 内部全流水线模式,Spout nextTuple和ack/fail运行在不同线程

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,663评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,125评论 3 414
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,506评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,614评论 1 307
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,402评论 6 404
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,934评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,021评论 3 440
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,168评论 0 287
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,690评论 1 333
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,596评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,784评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,288评论 5 357
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,027评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,404评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,662评论 1 280
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,398评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,743评论 2 370

推荐阅读更多精彩内容