CHO2 数据分析工具 Pandas

【课程2.2】 Pandas数据结构Series:基本概念及创建
"一维数组"Serise

import numpy as np
import pandas as pd
# 导入numpy、pandas模块

s = pd.Series(np.random.rand(5),index=list('abcde'))
print(s)
print(type(s))
# 查看数据、数据类型,所有的Pandas 数据结构都有index:

print('----------------')
print(list(s.index))   #第一列

#第二列 值
print(s.values)
# .index查看series索引,类型为rangeindex
# .values查看series值,类型是ndarray

# 核心:series相比于ndarray,是一个自带索引index的数组 → 一维数组 + 对应索引
# 所以当只看series的值的时候,就是一个ndarray
# series和ndarray较相似,索引切片功能差别不大
# series和dict相比,series更像一个有顺序的字典(dict本身不存在顺序),其索引原理与字典相似(一个用key,一个用index)
a    0.644754
b    0.900776
c    0.688774
d    0.823236
e    0.813280
dtype: float64
<class 'pandas.core.series.Series'>
----------------
['a', 'b', 'c', 'd', 'e']
[ 0.64475351  0.90077556  0.68877405  0.82323593  0.81328029]

Series 数据结构
Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引

# Series 创建方法一:由字典创建,字典的key就是index,values就是values

dic = {'a':1 ,'b':2 , 'c':3, '4':4, '5':15}
s = pd.Series(dic)
print(s)
# 注意:key肯定是字符串,假如values类型不止一个会怎么样? → dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5}
4     4
5    15
a     1
b     2
c     3
dtype: int64

# Series 创建方法二:由数组创建(一维数组)

arr = np.random.randn(6)
s = pd.Series(arr,index=list('abcdef'))
print(arr)
print(s)
# 默认index是从0开始,步长为1的数字

s = pd.Series(arr, index = ['a','b','c','d','e','f'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
[ 2.54754718  0.42551601  2.1959398  -0.89805983  0.31313358 -0.18893152]
a    2.547547
b    0.425516
c    2.195940
d   -0.898060
e    0.313134
f   -0.188932
dtype: float64
a     2.54755
b    0.425516
c     2.19594
d    -0.89806
e    0.313134
f   -0.188932
dtype: object

# Series 名称属性:name

s1 = pd.Series(np.random.randn(5))
print(s1)
print('-----')
s2 = pd.Series(np.random.randn(5),name = 'test')
print(s2)
print(s1.name, s2.name,type(s2.name))
# name为Series的一个参数,创建一个数组的 名称
# .name方法:输出数组的名称,输出格式为str,如果没用定义输出名称,输出为None

s3 = s2.rename('hehehe')
print(s3)
print(s3.name, s2.name)
# .rename()重命名一个数组的名称,并且新指向一个数组,原数组不变
0    1.149202
1   -0.563965
2    0.155182
3    1.269081
4    0.396754
dtype: float64
-----
0    0.002317
1   -0.388313
2   -0.364267
3    0.494363
4   -1.495762
Name: test, dtype: float64
None test <class 'str'>
0    0.002317
1   -0.388313
2   -0.364267
3    0.494363
4   -1.495762
Name: hehehe, dtype: float64
hehehe test


# Series 创建方法三:由标量创建

s = pd.Series(10, index = range(4))
print(s)
# 如果data是标量值,则必须提供索引。该值会重复,来匹配索引的长度
0    10
1    10
2    10
3    10
dtype: int64


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容